
Optimize Replica Server Placement in a
Satellite Network

Paper # 461, 12 pages + references
ABSTRACT
Satellite communication provides an attractive means of of-
fering Internet connectivity to users in remote locations, such
as villages, deserts, mountains, and at sea. However, trans-
mitting content over satellite networks is significantly more
expensive than traditional Internet. To address this issue,
we propose placing content replica servers within satellite
networks and optimizing replica placement for important
performance metrics, such as latency, transmission, and stor-
age cost. Our approach can support different types of satellite
networks, including Low Earth Orbit (LEO), Medium Earth
Orbit (MEO), Geostationary Orbit (GEO), and their com-
binations. An important challenge for supporting content
replicas in such networks is that LEO and MEO satellites are
constantly moving. We address this challenge by explicitly
considering their moving trajectories and strategically op-
timizing not only client performance, but also the cost of
transferring content from one satellite to another as needed.
We demonstrate the effectiveness of our approach using both
simulated traffic traces and a prototype system.

1 INTRODUCTION
The first satellite was launched in 1957 [13]. Since then satel-
lite communication has gone through rapid development. We
now have Geostationary Orbit (GEO), Medium Earth Orbit
(MEO) and Low Earth Orbit (LEO) satellites. GEO, MEO, and
LEO are 35,785 km, 2,000 – 36,000 km [48], and less than
2,000 km [40] from the Earth’s surface, respectively.

GEO satellite appears stationary to the user on the ground,
which simplifies communication as the ground station can
connect to the same satellite in the same direction all the
time. In comparison, both MEO and LEO satellites appear in
motion to the ground station, and require the ground station
to steer in different directions to stay connected and need
to switch to a different satellite when the previous one goes
out of sight [36]. Moreover, they require more satellites to
cover the Earth due to their closer distance to the Earth. In
return for the larger number of satellites and management
complexity, MEO and LEO satellite communication enjoys
lower latency and higher bandwidth owing to their proximity
to the Earth. LEO satellite communication features the lowest
delay and highest bandwidth, and can potentially support
challenging real-time applications [33]. In this paper, we
consider all these types of satellites but focus most on LEO
satellite networks due to its support of real-time applications

Clients Gateways

Satellites

InternetSatellite DishWiFi AP

Figure 1: A typical path between a client and the Inter-
net in LEO satellite network.

0 2000 4000 6000 8000 10000
Download Time (ms) of Homepage

0%

25%

50%

75%

100%

Pe
rc

en
ta

ge

0 200 400 600 800 1000
Latency (ms) to CDN

0%

25%

50%

75%

100%

Terrestrial Network Starlink Network

Figure 2: Measured download time of web homepage
and latency to CDN in satellite network and terrestrial
network.

and increasing commercial interest. For example, Starlink
and OneWeb have 3000+ and 542 LEO satellites in orbits,
respectively, while Amazon plans to launch over 3000 LEO
satellites in the next few years.
As shown in Figure 1, a client using a LEO satellite com-

municates with an Internet server through the following
path: its device −→ its WiFi router −→ its satellite dish −→ a
satellite −→ 0 or more satellites −→ a gateway closest to the
server −→ the server. This path involves two hops between
ground and satellites and 0 or more hops among satellites.
The delay can be significant.

We perform Web performance measurement using a Star-
link ground station in Texas. We measure the download time
of the homepage at the top 100 websites [38] and latency
to the top 15 content delivery network (CDN) providers ac-
cording to [11]. We compare it to the terrestrial network
at the same location. Figure 2 shows that the median time
to download a website homepage in Starlink is 2.7 times of
terrestrial network, with a median latency to a CDN server
7.1 times. In addition, we observe a long tail in both the
webpage download time and CDN latency in the Starlink
satellite network likely due to satellite movement.

1

SIGCOMM’23, September 10-14, 2023, New York City, US Paper # 461, 12 pages + references

The significant end-to-end delay in LEO satellites moti-
vates our design of CDN for LEO and other satellite systems.
In the existing Internet, CDN is widely used to speed up
content delivery to the user and reduce delivery cost [9]. Dif-
ferent from the traditional CDN, the relative position of LEO
satellites and ground stations are constantly changing, so we
can no longer place content on the same satellite to serve the
same region. For example, as the satellite serving the region
is moving away, its content may need to be replicated to an-
other satellite in order to serve the same region. In general,
we should explicitly take into account of the LEO orbits in
order to design the CDN for LEO satellite communication.

More specifically, we formulate the replica placement prob-
lems for satellites as an optimization problem that selects the
server locations to minimize the total cost of (i) delivering
the content from replicas to users, (ii) replicating the content
to replica servers, and (iii) the storage cost for the content.
We develop efficient algorithms that take advantage of

satellite orbits.We evaluate the effectiveness of our approaches
through both simulation and emulation in both web brows-
ing and video streaming scenarios. The simulation experi-
ments are based on three real web traces and use real latency
values from the Starlink network. In addition, we imple-
ment a real-world prototype system that employs separate
processes to mimic clients and servers, and uses data from
the Starlink network to emulate network connections. Our
results show that our methods can not only significantly en-
hance user experience, but also reduce replication cost and
storage costs. We will release our code to the community.
This paper does not raise any ethical issues.

2 BACKGROUND
2.1 Content Distribution Network (CDN)
CDN replicates content, such as web pages, software, audio,
and video, across a distributed set of nodes so that a client
can fetch the content from a nearby CDN node, thereby
offloading the origin server, improving the latency, and re-
ducing the cost. Some of the popular CDN providers include
Akamai, Amazon AWS, Microsoft Azure, Google cloud.

On the research front, a number of theoretical models have
been proposed for replica server placement [43], including fa-
cility location (i.e., minimizing the total cost of opening facili-
ties and the cost of using the facilities to serve the clients) [42,
49, 54], K-median (i.e., selecting a given number of replicas to
minimize the total cost of serving the clients) [27, 28, 39, 50],
K-center (i.e., similar to K-median but minimizing the max-
imum cost instead of the total cost) [21, 22], K-cache (i.e.,
similar to K-median but considers the cache hit ratio and
requires the request to go to the origin server if the replica
does not have cached content) [23]. A series of algorithms

have been developed to tackle the problems and most of
them use greedy or other heuristic algorithms [43].

Current CDNs are designed for stationary networks. How-
ever, the network topology is constantly changing in satellite
networks. If we place content to satellites, the satellites may
need to replicate the content to other nodes when they move
away from the interested regions. We need to explicitly take
into account replication costs caused by satellite movements
when designing a CDN for LEO satellite networks.

2.2 Satellite Networks
Artificial satellites are launched into the space to support a
variety of applications, such as communication [19], weather
monitoring [41], and navigation [16]. GEO satellites are the
earliest communication satellites [15]. Since they have the
same orbital period as the Earth, these satellites appear sta-
tionary to the ground station so that the ground station can
steer in the same direction for communication. However,
their large distance from the earth (35,785 km) makes it im-
possible to support time-critical traffic. To reduce the latency,
LEO satellite communication is becoming popular [52]. Star-
link has launched over 2,600 LEO satellites [2], OneWeb has
over 600 satellites in orbit [5], and Amazon plans to launch
3,236 satellites in the next few years [4]. LEO satellites orbit
around the Earth much faster than the Earth’s orbital pe-
riod. For example, the orbital period of a StarLink satellite
is 95 minutes. MEO satellites are in between GEO and LEO
in terms of their altitude, moving speed, and a number of
satellites required to cover the Earth.

The communication cost in satellite networks can be sig-
nificant, so CDNs are attractive for satellite communication.
Unlike traditional Internet, where nodes are typically sta-
tionary, LEO and MEO satellites are constantly moving with
respect to the end users and we need to dynamically move
the content around to satisfy the same region. This motivates
us to develop replication algorithms for satellite networks. (

3 OUR APPROACH
3.1 Problem Formulation
Our goal is to develop algorithms to determine the replica
placement that minimizes the total cost of replicating the
content and delivering it to end users during a given period.

We partition time into discrete slots 𝑡 and represent the net-
work as a time-dependent graph𝐺𝑡 =< 𝑉 , 𝐸𝑡 >.𝑉 consists of
three types of vertices:𝑉𝑢𝑠𝑒𝑟 represents users or merged user
regions, 𝑉𝑟𝑒𝑝𝑙𝑖𝑐𝑎 represents potential replica servers such as
satellites, ground stations, and terrestrial servers, and𝑉𝑜𝑟𝑖𝑔𝑖𝑛
represents the origin server, which always holds the con-
tent. The edge set 𝐸𝑡 is associated with time 𝑡 and captures
the dynamic connectivity between nodes. For example, one
satellite 𝑣𝑎 can be connected to a ground station 𝑣𝑏 at time 𝑡1

2

Optimize Replica Server Placement in a
Satellite Network SIGCOMM’23, September 10-14, 2023, New York City, US

but disconnected at time 𝑡2. In this scenario, we will always
have 𝑣𝑎, 𝑣𝑏 in the vertex set 𝑉 but the edge between 𝑣𝑎 and
𝑣𝑏 will be in 𝐸𝑡1 but absent in 𝐸𝑡2 .

Users at different locations generate requests for content
during each time slot. We choose popular files and represent
them as a content set𝐶 . 𝑠𝑖𝑧𝑒𝑐 represents the size of file 𝑐 ∈ 𝐶 ,
and 𝑑𝑒𝑚𝑎𝑛𝑑𝑣,𝑐,𝑡 represents the quantified request demand
from user 𝑣 for content 𝑐 in time slot 𝑡 .

Our task is to choose appropriate replica servers for each
content over a given period. We define the replica set for con-
tent 𝑐 in time slot 𝑡 as 𝑆𝑐,𝑡 . The algorithm should choose ap-
propriate 𝑆𝑐,𝑡 given the network topology and user demand.
Origin servers are always included in 𝑆𝑐,𝑡 (𝑉𝑜𝑟𝑖𝑔𝑖𝑛 ⊂ 𝑆𝑐,𝑡). We
add additional replica servers 𝑣 ∈ 𝑉𝑟𝑒𝑝𝑙𝑖𝑐𝑎 to 𝑆𝑐,𝑡 . The poten-
tial replica server set 𝑉𝑟𝑒𝑝𝑙𝑖𝑐𝑎 consists of satellites, ground
stations, and terrestrial servers. The replica set 𝑆𝑐,𝑡 is time-
dependent, allowing it to reflect the dynamic transfer and
replication of content between satellites. For example, if a
satellite 𝑣𝑎 ∈ 𝑆𝑐,𝑡 moves away from a serving region, it can
be replaced in 𝑆𝑐,𝑡+1 by another satellite 𝑣𝑏 .
To measure different selections of replicas, we use 3 met-

rics: (1) query cost (the cost of serving user requests), (2)
replication cost (the cost of replicating content to the repli-
cas both at the beginning and in the middle), and (3) storage
cost at the replicas. Note that our algorithms are general and
can easily be applied to support other performance metrics.
Query cost: Query cost quantifies the cost of serving user
requests. We assume that each user will query the closest
replica and the total query cost will be proportional to the
user number and demand. Specifically, the query cost is∑︁

𝑐

∑︁
𝑡

∑︁
𝑣𝑢𝑠𝑒𝑟 ∈𝑉𝑢𝑠𝑒𝑟

𝑑𝑒𝑚𝑎𝑛𝑑𝑣𝑢𝑠𝑒𝑟 ,𝑐,𝑡 × min
𝑣∈𝑆𝑐,𝑡

𝑐𝑜𝑠𝑡𝑡𝑞𝑢𝑒𝑟𝑦 (𝑣𝑢𝑠𝑒𝑟 , 𝑣)

where 𝑐𝑜𝑠𝑡𝑡𝑞𝑢𝑒𝑟𝑦 (·, ·) is a cost function between the user ver-
tex and the server vertex. It is derived from the graph 𝐺𝑡 ,
and can be quantified by hop count or latency.
Replication cost: We use replication cost to represent the
costs of creating new replicas. It is formulated as∑︁

𝑐

∑︁
𝑡

∑︁
𝑣𝑛𝑒𝑤 ∈𝑆𝑐,𝑡

min
𝑣𝑜𝑙𝑑 ∈𝑆𝑐,𝑡−1

𝑐𝑜𝑠𝑡𝑡
𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛

(𝑣𝑛𝑒𝑤, 𝑣𝑜𝑙𝑑)

where 𝑐𝑜𝑠𝑡𝑡
𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛

(·, ·) is a cost function representing the
cost of replicating content from an old replica to a new
replica. If 𝑣𝑛𝑒𝑤 = 𝑣𝑜𝑙𝑑 , wewill have 𝑐𝑜𝑠𝑡𝑡𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 (𝑣𝑛𝑒𝑤, 𝑣𝑜𝑙𝑑) =
0. A unique aspect of our formulation is that our network
is dynamically changing and the replication cost between
two nodes may change depending on their relative position
at that time. This is due to the orbital organization of satel-
lites, where replication to adjacent satellites in the same or
neighboring orbits is typically more cost-effective than to
distant satellites. We encourage content replication to occur
as close as possible to reduce replication traffic.

Storage cost: We formulate storage cost as follows:∑︁
𝑐

∑︁
𝑡

∑︁
𝑣∈𝑆𝑐,𝑡

𝑠𝑖𝑧𝑒𝑐 × 𝑐𝑜𝑠𝑡𝑠𝑡𝑜𝑟𝑎𝑔𝑒 (𝑣)

where 𝑐𝑜𝑠𝑡𝑠𝑡𝑜𝑟𝑎𝑔𝑒 (·) is a cost function to quantify the cost of
storing one unit size of content at different servers. Storing
content on satellites is typically more costly than storing
at ground servers [25]. By setting different storage costs
for different kinds of servers, we can effectively leverage
different kinds of replica servers to reach the optimal.

3.2 Our Replication Algorithms
Our problem is to find 𝑆𝑐,𝑡 that minimizes the sum of the
three costs (i.e., query cost, replication cost, and storage cost)
across all time slots, where 𝑆𝑐,𝑡 is chosen from𝑉𝑟𝑒𝑝𝑙𝑖𝑐𝑎 . If only
one time slot is considered, we can transform our problem to
a well-known NP-hard problem – the uncapacitated facility
location problem (UFL) [34], by treating the sum of replica-
tion cost and storage cost as the opening cost of a facility, and
query cost as the transport cost in UFL. Since only solving
one time slot is already NP-hard, our general multi-time-slot
problem is also NP-hard. In this section, we will introduce
our practical algorithms. We omit the dimension of content
𝑐 in this part for ease of description because the algorithm
can be applied to each content independently.

3.2.1 Multi-time Local Search. We look for an effective
algorithm that works well in practice. Inspired by the local
search algorithm for the UFL problem [8], we first propose a
multi-time local search (MTLS) method.

The UFL local search algorithm operates as follows: Given
an initial facility set 𝐹 , the algorithm allows for the addition,
removal, or replacement of a facility in 𝐹 if it results in an
improvement in the objective. The algorithm continues this
process until no further improvements can be made.

Suppose there are 𝑇 time snapshots. Our task is to find 𝑇
replica set 𝑆1, 𝑆2, ..., 𝑆𝑇 . Similarly, we can define the nearby
set of each 𝑆𝑡 to be: |𝑆𝑛𝑒𝑎𝑟𝑏𝑦𝑡 \ 𝑆𝑡 | = 1 or |𝑆𝑡 \ 𝑆𝑛𝑒𝑎𝑟𝑏𝑦𝑡 | = 1.
For the sake of efficiency, we do not test 𝑆𝑛𝑒𝑎𝑟𝑏𝑦𝑡 one by
one. Instead, we solve the following sub-problem: Given
{𝑆1, 𝑆2, ..., 𝑆𝑇 }, what is the best solution among all possiblities
of {𝑆𝑛𝑒𝑎𝑟𝑏𝑦1 , 𝑆

𝑛𝑒𝑎𝑟𝑏𝑦

2 , ..., 𝑆
𝑛𝑒𝑎𝑟𝑏𝑦

𝑇
}. Recall that we always have

𝑉𝑜𝑟𝑖𝑔𝑖𝑛 ⊂ 𝑆𝑡 and we need to choose new replicas from𝑉𝑟𝑒𝑝𝑙𝑖𝑐𝑎 .
Let 𝑁 = |𝑉𝑟𝑒𝑝𝑙𝑖𝑐𝑎 |. For each 𝑆𝑡 , the total number of 𝑆𝑛𝑒𝑎𝑟𝑏𝑦𝑡

will be𝑂 (𝑁 2), where adding a new replica yields𝑂 (𝑁) sets,
deleting a replica yields 𝑂 (𝑁) sets, and replacing a replica
yields 𝑂 (𝑁 2) sets. Using an exhaustive search method to
acquire the best solution will take 𝑂 (𝑁 2𝑇).
We use dynamic programming (DP) to avoid the exhaus-

tive search and enhance efficiency, which takes 𝑂 (𝑇𝑁 4). To
3

SIGCOMM’23, September 10-14, 2023, New York City, US Paper # 461, 12 pages + references

introduce our DP, we first introduce some symbols as fol-
lows. We define 𝑓 (𝑡, 𝑆𝑛𝑒𝑎𝑟𝑏𝑦𝑡) to represent the minimum total
cost for time 1, 2...𝑡 and we are required to use replica set
𝑆
𝑛𝑒𝑎𝑟𝑏𝑦

𝑡 at time 𝑡 . 𝑆𝑛𝑒𝑎𝑟𝑏𝑦
𝑡−1 is defined as the replica set used

at 𝑡 − 1. 𝑅𝐶 (𝑡, 𝑆𝑛𝑒𝑎𝑟𝑏𝑦
𝑡−1 , 𝑆

𝑛𝑒𝑎𝑟𝑏𝑦

𝑡) is defined as the replication
cost from 𝑆

𝑛𝑒𝑎𝑟𝑏𝑦

𝑡−1 to 𝑆𝑛𝑒𝑎𝑟𝑏𝑦𝑡 following our definition in Sec-
tion 3.1, while we use 𝑄𝐶 (𝑡, 𝑆𝑛𝑒𝑎𝑟𝑏𝑦𝑡) and 𝑆𝐶 (𝑡, 𝑆𝑛𝑒𝑎𝑟𝑏𝑦𝑡) to
represent the query cost and storage cost at time 𝑡 when we
choose 𝑆𝑛𝑒𝑎𝑟𝑏𝑦𝑡 as the replica set.
We are required to use 𝑆𝑛𝑒𝑎𝑟𝑏𝑦𝑡 for 𝑓 (𝑡, 𝑆𝑛𝑒𝑎𝑟𝑏𝑦𝑡), thus the

query cost and storage cost at time 𝑡 are fixed, represented
as𝑄𝐶 (𝑡, 𝑆𝑛𝑒𝑎𝑟𝑏𝑦𝑡) and 𝑆𝐶 (𝑡, 𝑆𝑛𝑒𝑎𝑟𝑏𝑦𝑡), respectively. Besides, to
minimize 𝑓 (𝑡, 𝑆𝑛𝑒𝑎𝑟𝑏𝑦𝑡), we should minimize sum of replica-
tion costs at time 𝑡 (𝑅𝐶 (𝑡, 𝑆𝑛𝑒𝑎𝑟𝑏𝑦

𝑡−1), 𝑆𝑛𝑒𝑎𝑟𝑏𝑦𝑡) and total costs be-
fore time at time 𝑡−1 (𝑓 (𝑡−1, 𝑆𝑛𝑒𝑎𝑟𝑏𝑦

𝑡−1)). We enumerate all pos-
sible 𝑆𝑛𝑒𝑎𝑟𝑏𝑦

𝑡−1 and assign the smallest 𝑅𝐶 (𝑡, 𝑆𝑛𝑒𝑎𝑟𝑏𝑦
𝑡−1 , 𝑆

𝑛𝑒𝑎𝑟𝑏𝑦

𝑡) +
𝑓 (𝑡−1, 𝑆𝑛𝑒𝑎𝑟𝑏𝑦

𝑡−1)+𝑄𝐶 (𝑡, 𝑆𝑛𝑒𝑎𝑟𝑏𝑦𝑡)+𝑆𝐶 (𝑡, 𝑆𝑛𝑒𝑎𝑟𝑏𝑦𝑡) to 𝑓 (𝑡, 𝑆𝑛𝑒𝑎𝑟𝑏𝑦𝑡).
Details are shown in Algorithm 1.

Our DP can be proved by mathematical induction. There
is no user demand at 𝑡 = 0 thus 𝑓 (0,𝑉𝑜𝑟𝑖𝑔𝑖𝑛) = 0 is the best
for 𝑡 = 0. Now assuming that 𝑓 (𝑡 − 1, 𝑆𝑛𝑒𝑎𝑟𝑏𝑦

𝑡−1) is the smallest
cost for time 1, 2, .., 𝑡 − 1, 𝑓 (𝑡, 𝑆𝑛𝑒𝑎𝑟𝑏𝑦𝑡) has to be constructed
from 𝑡−1 and we have enumerated all possibilities of replicas
we can use in time 𝑡 − 1. Otherwise, there is a contradiction
if we check the replica we use at 𝑡 − 1.
The time complexity 𝑂 (𝑇𝑁 4) comes from the following

calculation. The number of total states in DP is 𝑇𝑁 2, where
𝑁 2 is the number of nearby set (𝑆𝑛𝑒𝑎𝑟𝑏𝑦𝑡). To get every state,
we need to enumerate 𝑁 2 nearby sets (𝑆𝑛𝑒𝑎𝑟𝑏𝑦

𝑡−1) at time 𝑡 − 1.
Thus the DP process will take 𝑂 (𝑇𝑁 4).

We find that the replacing operation yields 𝑂 (𝑁 2) nearby
sets, which is the bottleneck of computation and results in
the term 𝑁 4 in the time complexity expression 𝑂 (𝑇𝑁 4). If
we require that the replacing operation can only replace
the replica 𝑣 with its 𝑘 nearest neighbors in the graph 𝐺𝑡 ,
the replacing operation will only yield 𝑂 (𝑘𝑁) candidates,
hence the complexity of DP will be reduced to 𝑂 (𝑇𝑘2𝑁 2). It
makes sense because replicating to nearby satellites incurs
lower replication costs. In our evaluation, we set 𝑘 = 4. The
overall time complexity of MTLS is 𝑂 (𝑀𝑇𝑘2𝑁 2), where𝑀
is the maximum number of iterations. We call this algorithm
multi-time local search (MTLS) in this paper.

3.2.2 Multi-time Orbit-based Local Search. The MTLS al-
gorithm is slow in practice due to the large value of 𝑁 in
modern LEO satellite constellations. To overcome this issue,
we propose utilizing the orbit information of satellites.

Satellites are typically organized into multiple orbits, for
instance, StarLink phase I has 72 orbits with 22 satellites

Algorithm 1Multi-time Local Search (MTLS)
Input: 𝑇 , 𝑉𝑜𝑟𝑖𝑔𝑖𝑛 , 𝑉𝑟𝑒𝑝𝑙𝑖𝑐𝑎 , 𝑄𝐶 , 𝑅𝐶 , 𝑆𝐶 ,𝑀
1: 𝑆𝑡 = 𝑉𝑜𝑟𝑖𝑔𝑖𝑛, 𝑡 = 1, 2, ..,𝑇
2: for𝑚 = 1 to𝑀 do ⊲ iteratively update 𝑆𝑡
3: 𝑓 (0,𝑉𝑜𝑟𝑖𝑔𝑖𝑛) = 0
4: for 𝑡 = 1 to 𝑇 do
5: for each 𝑆

𝑛𝑒𝑎𝑟𝑏𝑦

𝑡 at time 𝑡 do
6: for each 𝑆

𝑛𝑒𝑎𝑟𝑏𝑦

𝑡−1 at time 𝑡 − 1 do
7: 𝑐 = 𝑄𝐶 (𝑡, 𝑆𝑛𝑒𝑎𝑟𝑏𝑦𝑡) + 𝑆𝐶 (𝑡, 𝑆𝑛𝑒𝑎𝑟𝑏𝑦𝑡) +

𝑅𝐶 (𝑡, 𝑆𝑛𝑒𝑎𝑟𝑏𝑦
𝑡−1 , 𝑆

𝑛𝑒𝑎𝑟𝑏𝑦

𝑡) + 𝑓 (𝑡 − 1, 𝑆𝑛𝑒𝑎𝑟𝑏𝑦
𝑡−1)

8: 𝑓 (𝑡, 𝑆𝑛𝑒𝑎𝑟𝑏𝑦𝑡) =𝑚𝑖𝑛{𝑐, 𝑓 (𝑡, 𝑆𝑛𝑒𝑎𝑟𝑏𝑦𝑡)}
9: end for
10: end for
11: end for
12: Update 𝑆𝑡 , 𝑡 = 1, 2, ..,𝑇 according to 𝑓

13: end for
Output: 𝑆𝑡 , 𝑡 = 1, 2, ..,𝑇

each [18]. Given the fixed trajectory of orbits, we propose a
hierarchical method for selecting satellite replicas. First, we
select an orbit for each time snapshot (𝑜1, 𝑜2, ..., 𝑜𝑡), then we
pick the replica from the corresponding orbit 𝑜𝑡 .

DP can also be applied to select orbits. For each time slot
𝑡 and each orbit 𝑜 , we first calculate the best satellite replica
with the lowest query cost, denoted as 𝑣𝑜,𝑡 . Then, we deter-
mine the best orbit we can choose in every time slot. Here,
choosing orbit 𝑜 in time slot 𝑡 means deploying the replica
at 𝑣𝑜,𝑡 . In other words, we quantify the quality of the orbit
based on the best replica in the orbit. The orbit selection
DP utilizes 𝑔(𝑡, 𝑜) to represent the minimum cost for time
1, 2, ..., 𝑡 and orbit 𝑜 must be chosen at time 𝑡 . We enumerate
the chosen orbit in 𝑡 − 1 to minimize 𝑔(𝑡, 𝑜).

Given the orbit selection𝑜1, 𝑜2, ..., 𝑜𝑡 , and the current replica
set {𝑆1, 𝑆2, ..., 𝑆𝑇 }, we require that only satellite from orbit
𝑜𝑡 can be added to 𝑆𝑡 when constructing the nearby set. We
do not allow deletion and replacement operation to reduce
computation cost. We arrive at the multi-time orbit-based
local search (MTOLS) algorithm as shown in Algorithm 2.

Each iteration in MTOLS consists of one orbit selection DP
and one replica selection DP. Suppose 𝑃 is the orbit number,
and𝑄 is the satellite number in each orbit. The orbit selection
DP takes𝑂 (𝑇𝑃2), and the replica selection DP takes𝑂 (𝑇𝑄2).
Therefore, the total time complexity of MTOLS is𝑂 (𝑀𝑇 (𝑃2+
𝑄2)), where𝑀 is the maximum iteration number. In contrast,
the time complexity of MTLS is𝑂 (𝑀𝑇𝑘2𝑁 2), where 𝑁 = 𝑃𝑄 .
MTOLS is faster thanMTLS because 𝑃2+𝑄2 ≪ 𝑃2𝑄2 = 𝑁 2 <
𝑘2𝑁 2. The inequality 𝑃2 + 𝑄2 < 𝑃2𝑄2 holds when 𝑃 > 2
and 𝑄 > 2. As an example, we have 𝑃 = 72 and 𝑄 = 22 for
Starlink phase I satellites. MTOLS will be 222 ·722

222+722 ·𝑘
2 ≈ 442·𝑘2

times faster thanMTLS theoreticallywhen applied to Starlink
phase I.

4

Optimize Replica Server Placement in a
Satellite Network SIGCOMM’23, September 10-14, 2023, New York City, US

Algorithm 2 Multi-time Orbit-based Local Search (MTOLS)
Input: 𝑇 , 𝑉𝑜𝑟𝑖𝑔𝑖𝑛 , 𝑉𝑟𝑒𝑝𝑙𝑖𝑐𝑎 , 𝑄𝐶 , 𝑅𝐶 , 𝑆𝐶 ,𝑀
1: 𝑆𝑡 = 𝑉𝑜𝑟𝑖𝑔𝑖𝑛, 𝑡 = 1, 2, ..,𝑇
2: for𝑚 = 1 to𝑀 do ⊲ iteratively update 𝑆𝑡
3: 𝑔(0, ∅) = 0 ⊲ orbit selection DP
4: for 𝑡 = 1 to 𝑇 do
5: for each 𝑜𝑡 at time 𝑡 do
6: for each 𝑜𝑡−1 at time 𝑡 − 1 do
7: 𝑐 = 𝑄𝐶 (𝑡, 𝑜𝑡)+𝑆𝐶 (𝑡, 𝑜𝑡)+𝑅𝐶 (𝑡, 𝑜𝑡−1, 𝑜𝑡)+

𝑔(𝑡 − 1, 𝑜𝑡−1)
8: 𝑔(𝑡, 𝑜𝑡) =𝑚𝑖𝑛{𝑐, 𝑔(𝑡, 𝑜𝑡)}
9: end for
10: end for
11: end for
12: Get 𝑜𝑡 , 𝑡 = 1, 2, ..,𝑇 according to 𝑔
13: Update 𝑆𝑡 similarly with Algorithm 1 but only adding

one replica from 𝑜𝑡 is allowed to generate 𝑆𝑛𝑒𝑎𝑟𝑏𝑦𝑡

14: end for
Output: 𝑆𝑡 , 𝑡 = 1, 2, ..,𝑇

4 PRACTICAL CONSIDERATIONS
To realize a content replication system for a satellite network,
there are several practical issues we need to consider: (1)
predicting network topology, (2) predicting user demand,
(3) supporting both web pages and video download, and (4)
redirecting the users’ requests to an appropriate replica.

For (1), to predict network topology, we leverage the public
satellites’ trajectory information.
For (2), we group users to regions and use Exponential

Weighted Moving Average (EWMA) to predict the demand
for each region.We examine the effectiveness of our methods
based on both the predicted and ground truth demand.
For (3), we observe there is a major difference between

downloading video versus downloading web pages. To sup-
port users with different network connectivity, videos are
split into small encoded chunks (e.g., a few seconds each)
at multiple bit rates. The client selects the desired bit rate
according to its current network condition using an adaptive
bitrate (ABR) algorithm [47]. A number of ABR algorithms
have been proposed in the literature. Among them, Model
Predictive Control (MPC) [55] has been shown to be effective
and widely used. MPC optimizes video Quality of Experience,
which is defined as𝑄𝑜𝐸𝑘 = 𝑎 ·𝑅𝑘 −𝑏 · 𝑡𝑟𝑒𝑏𝑢𝑓 ,𝑘 −𝑐 · |𝑅𝑘 −𝑅𝑘−1 |,
where 𝑘 is the chunk index, 𝑅𝑘 is the selected bitrate, and
𝑡𝑟𝑒𝑏𝑢𝑓 ,𝑘 is the rebuffer time. We set 𝑎 = 𝑐 = 1 and 𝑏 = 4.3
for our experiments and compare video QoE and replication
cost for different replication strategies.
For (4), to redirect a user’s request, we can borrow the

DNS request redirection from the traditional CDN. It maps
the client’s location to an appropriate replica server. A sim-
ple mapping strategy is based on proximity. However, this

Client 1

Client 2

Client N

……

Client 3

Client 4

Satellite Network Probe

Real Origin

Server

Real Replica

Server

Real DNS

Server

HTTP / Traceroute / DNS Lookup

DNS Server Origin Server

Replica Server 1 Replica Server 2

……

Client 5

Client Pool Server Pool

Network Probe

Replica Server M

Figure 3: Prototype System Implementation

may cause performance degradation during a flash crowd
(i.e., the replica closest to a hotspot easily gets overloaded).
One can alleviate this issue by redirecting to different replica
servers. For example, a round robin strategy redirects the
client requests randomly to one of the 𝑛 closest replicas [53].
Weighted round robin strategy is similar to round robin ex-
cept that it weights the probability of selecting a replica based
on its proximity to the client [7]. To apply DNS redirection to
the LEO network, whose topology changes very frequently,
we need to refresh the DNS entries frequently. The frequent
access can be alleviated by computing the content placement
beforehand according to the satellite trajectories. Users can
get content location periodically from the DNS server.

5 SYSTEM IMPLEMENTATION
We evaluate our system through a prototype implementa-
tion. As we do not have control access to the satellite net-
work (e.g., replicating content to real satellites), we emulate a
satellite network using network traces and let user requests
go through network links according to the traces. Figure 3
shows our system. It consists of 3 parts: the client pool, the
server pool, and the network probe. The client pool and the
server pool are process pools. User clients, replica servers, the
DNS server, and the origin server run as separate processes.

To conduct a realistic evaluation, the link performance be-
tween the user pool and the server pool follows the network
traces. We collect the network traces in the Starlink network.
We set up an origin server on the Internet, and measure its
bandwidth and latency from the clients. Similarly, we mea-
sure the latency and bandwidth to a replica server by sending
requests to an Akamai server [35]. We also use traceroute
to measure the latency between a satellite and a gateway.
We derive the latency between two satellites based on their
distance and speed of light. Meanwhile, we also measure the
latency to a DNS server by sending DNS queries.

We construct links in our testbed according to the network
traces obtained from the above measurement. As discussed
in Section 4, we pre-compute the placement of content. All

5

SIGCOMM’23, September 10-14, 2023, New York City, US Paper # 461, 12 pages + references

clients have to query the DNS server every 10 minutes to get
the latest location information of the content.

6 EVALUATION
We conduct comprehensive experiments to evaluate the per-
formance of our methods in comparison to baselines and un-
cover key features of satellite networks. Experiments include
trace-driven simulations and prototype implementation.

6.1 Experiment Setup
Satellite Constellations: Satellite constellations can be
roughly categorized into 3 types by the orbit height: LEO,
MEO, and GEO satellites. In this paper, we want to exam-
ine all of these satellite constellations. We select StarLink
phase I for LEO, O3b for MEO, and ViaSat for GEO. Star-
Link phase I consists of 1,584 satellites in 72 orbits at 550km
height [18]. O3b, owned by SES S.A., is a MEO constellation
of 20 satellites operating at 8,062km [19]. ViaSat consists of 4
geostationary satellites [6]. All three constellations provide
Internet access and have real-world applications. We enable
inter-satellite connections for Starlink, with each satellite
connected to 4 neighboring satellites in its orbit and adjacent
orbits [12]. O3b and ViaSat do not have inter-satellite links.
Gateways:As illustrated in Figure 1, the user client connects
to satellites, which then connect to gateways, also known
as ground stations. The gateways dispatch client requests to
the Internet. 166 gateways for Starlink were collected from
a website 1 and used in our experiment.
Trace Datasets:We conduct trace-driven simulation using
three real traces: MAWI [51], Wikipedia [46], and CAIDA [3].
MAWI and CAIDA are packet traces collected in monitored
links in Japan and the US, respectively, and are filtered to only
include web requests by checking the protocol and port used
in packets. The Wikipedia dataset is collected from a west-
coast machine in the US which serves multi-media content
for Wikipedia. This dataset does not contain geographical
information of visitors, thus we randomly assign the requests
to each US state based on population distribution and exclude
Alaska and Hawaii, as they are out of the service region of
Starlink or ViaSat. We only keep the top 10 most visited
content and 1-hour trace for all of these three datasets. In
addition, we also use more datasets, which will be introduced
in specific experiments.
Sampled Real Latency: We consider 3 types of metrics:
hop count, ideal latency and sampled real latency. Hop count
is straightforward: satellite-to-user, satellite-to-gateway, and
every inter-satellite link are all counted as 1 hop each. Ideal
latency is calculated using physical distance and the speed of
transmission. Additionally, real latency measurements were
conducted in a Starlink network. We acquire the latency of
1The website is starlink.sx

the connection between the user and a gateway by using
traceroute. We measure these latency numbers for 1 day.
In our experiments, we can randomly sample the latency
from the measured one links between the satellites and the
ground.
Replication Cost Ratio: Query cost can be measured by
latency or hop count. Besides, proper settings for replication
cost and storage cost are also necessary. The transfer cost
between nodes 𝑣1 and 𝑣2 is set to be 𝛼 times of the query
cost between these nodes, where 𝛼 > 1. The intuition here
is that replicating between nearby satellites is cheaper and
more convenient than between remote satellites. To avoid
frequent replica position changes, 𝛼 > 1 is used, with 𝛼 = 50
as the default value in experiments. A value of 𝛼 = 1 would
result in replicating the origin server to a nearby satellite
for each user, yielding the same cost as direct querying from
the origin server. A larger 𝛼 requires a careful selection of
replica positions to serve a large number of users for a long
time.
Storage Cost Ratio: We define the smallest query cost
across all time stamps to be 𝑐𝑞𝑚𝑖𝑛 . It will be 1 or several
milliseconds if hop count or latency is used as metrics, re-
spectively. The storage cost is set to 𝛽 · 𝑐𝑞𝑚𝑖𝑛 for gateways
and 𝛾 · 𝑐𝑞𝑚𝑖𝑛 for satellites, where 𝛾 > 𝛽 . We refer to 𝛽 and
𝛾 as storage ratios. The difference between 𝛾 and 𝛽 reflects
the cost difference between terrestrial and satellite storage.
Usually satellite storage is much more expensive than ter-
restrial storage. In our evaluation, 𝛽 = 1 and 𝛾 = 10 are used
based on the data from [25], which shows that transferring
1 GB of data costs 0.1$ for terrestrial CDN operators and 1$
for satellite network providers.

6.2 Algorithm Evaluation
6.2.1 Baseline methods. In this section, we introduce the

baseline methods. In general, our baselines contain not only
heuristic algorithms for UFL [8, 20], but also algorithms
designed for a satellite network [25, 37].
Algorithms for UFL: Our problem can be reduced to a UFL
problem if only one time slot is considered. Therefore, we
can employ an algorithm of UFL and apply it at each time slot
independently and ignore the relationship across multiple
timeslots, which may lead to large replication traffic.

We evaluate the following three popular UFL algorithms:
First, a naive greedy algorithm tries to minimize the total
cost every time by adding a new facility until the total cost
cannot be reduced. Second, a smarter greedy algorithm pro-
posed in [20] uses an average cost instead of the total cost
as the greedy metrics, and assigns users to facilities while
considering the average opening cost and transport cost to
unassigned users and the reduction in transport cost for

6

Optimize Replica Server Placement in a
Satellite Network SIGCOMM’23, September 10-14, 2023, New York City, US

0

2

4

M
AW

I

1e5

3.71

2.84

2.10
2.83

3.23

1.64
0.97 0.91

Hop Count

0.0

0.5

1.0

1.5
1e6

1.22

0.95

0.65

0.95
1.19

0.46
0.28 0.25

Latency (ms)

0

1

2

1e6

1.56
1.26

0.95
1.27

1.75

0.92
0.57 0.55

Sampled Latency (ms)

0

1

2

W
ik

ip
ed

ia

1e6

1.96

0.43 0.35 0.47 0.45 0.50
0.30 0.28

0

1

2

3

1e6

2.81

1.01 0.86
1.10 1.16 1.00

0.69 0.60

0

2

4

6
1e6

4.74

2.37 2.08
2.50 2.38

2.89

1.83 1.73

0.0

0.5

1.0

1.5

C
AI

D
A

1e6

1.24

0.72
0.56

0.73

1.22

0.83

0.35 0.34

0

2

4

1e6

4.10

2.48
1.91

2.57

4.29

2.38

1.02 0.89

0.0

2.5

5.0

7.5

1e6

5.27

3.83
3.04

3.87

6.97

4.62

2.23 2.12

No Replica
Naive Greedy

1.61x Greedy
Local Search

PCH
StarFront

MTOLS
MTLS

Figure 4: Evaluation of different methods based on 3
real traces (MAWI, Wikipedia, CAIDA) is presented in
the figure. The total cost of variousmetrics is displayed
in columns.

assigned users after a new facility is established. This algo-
rithm has been shown to be a 1.61-approximation of the UFL
problem and will be referred to as the "1.61x greedy" in our
experiments. Third, a local search algorithm [8] of UFL has
an approximation factor of 3 for the UFL problem, as proved
in [17]. Some other algorithms based on linear programming
rounding reach lower approximation factors [10, 29]. We do
not include these methods because we have thousands of
satellites and running linear programming on these many
facilities will take too long.
StarFront: [25] proposes StarFront to set up replicas on
satellites and cloud servers to minimize the latency. The al-
gorithm needs a latency threshold for all users and it chooses
replicas for every user to satisfy the latency threshold. If mul-
tiple replicas satisfy the threshold, the one with the smallest
sum of replication cost and storage cost will be chosen. Our
metrics include not only latency but also hop count. Thus
we extend this algorithm to support hop count. We set an
appropriate threshold by minimizing the total cost.
Periodic Cache Handoff (PCH): [37] proposes a heuristic
to manage satellite cache. It will place the cache near the
end users first. Then the cache will be replicated to the next
satellite on the same orbit periodically. There is also inter-
orbit cache replication with a lower frequency. We refer to
this method as periodic cache handoff (PCH).

6.2.2 Results of Different Metrics. Our results, shown in
Figure 4, demonstrate the effectiveness of our proposedmeth-
ods, MTLS and MTOLS. The experiments include LEO satel-
lites and gateways in the network structure.
Among the evaluated algorithms, our methods consis-

tently achieved the lowest total cost across 3 trace datasets
and 3 metric types. MTLS outperformed all other algorithms

10

12

14

M
AW

I 12.8
12.5

12.1
12.5

11.2 11.4
11.0 10.9

Logged Query Cost

8

10

12

8.1

9.7

8.2

12.2

10.8
10.2 10.1

Logged Replication Cost

8

10

7.7
8.4

7.4

10.8
10.3

9.4 9.3

Logged Storage Cost

12

14

W
ik

ip
ed

ia 14.5

12.9 12.7
13.0

12.5
12.9

12.3 12.3
10

12

10.0
10.6

10.0

12.2
11.5

11.2
10.9

4

5

6

4.3

4.8

3.9

5.9

4.1

5.6 5.6

12

14

C
AI

D
A

14.0
13.5 13.2

13.5

12.1
12.4 12.5 12.5

8

10

12

14

8.8
9.6 9.2

13.4
12.8

10.8 10.7

8

10

12

14

8.5
9.5

8.7

12.8
12.4

10.1 10.5

No Replica
Naive Greedy

1.61x Greedy
Local Search

PCH
StarFront

MTOLS
MTLS

Figure 5: This figure shows the breakdown of the total
cost: Query cost, replication cost and storage cost. The
metric is hop count.

with a reduction in total cost ranging from 16.91% to 53.26%
compared to the strongest baseline. MTOLS also showed
favorable performance compared to all baselines.
The total cost of each method is decomposed into query

cost, replication cost, and storage cost, as shown in Figure 5.
It reveals that UFL algorithms typically have lower replica-
tion and storage costs, but higher query costs. This is due to
the UFL algorithms’ focus on demand within each time slot
without considering future demand. They are designed to
optimize for static networks and cannot handle dynamic net-
work and dynamic user demands. In contrast, PCH has low
query costs but high replication and storage costs. As noted
in [37], the intra-orbit replication of PCH takes place every
4.3 minutes for all replicas, which will incur high replication
cost. StarFront has low query costs but high replication and
storage costs because it does not allow for replica changes
during periods. Our methods balance all costs effectively.
MTLS has lower replication costs than MTOLS. The reason
may be that MTOLS does not have replacement operations
but MTLS has it when generating the nearby set.

6.2.3 Oracle v.s. Prediction of Demand. In Section 6.2.2,
the experiments used oracle information of demand to select
replicas, but this information is not always available in real-
world scenarios. We conduct additional experiments without
oracle information, but using averaged historical demand
data over the past 5 minutes to predict future demand. This
prediction is used as input for all algorithms except PCH,
which is rule-based and does not require predictions. Fig-
ure 6 shows that the gap between PCH and other methods
narrows, but our methods continue to outperform the other
algorithms. This demonstrates their robustness.

6.2.4 Computation time. We show the computation time
on theMAWI dataset in Table 1. All methods are evaluated on

7

SIGCOMM’23, September 10-14, 2023, New York City, US Paper # 461, 12 pages + references

0

2

4

M
AW

I

1e5

3.71
3.42

2.43

3.42 3.23
2.63

1.50 1.35

Hop Count

0.0

0.5

1.0

1.5
1e6

1.22
1.06

0.87
1.06

1.19

0.75

0.48 0.42

Latency (ms)

0

1

2

1e6

1.56
1.38

1.18
1.40

1.75 1.66

0.77 0.73

Sampled Latency (ms)

0

1

2

W
ik

ip
ed

ia

1e6

1.96

0.56 0.49 0.59 0.45 0.59 0.45 0.42

0

1

2

3

1e6

2.81

1.18 1.03 1.25 1.16 1.21
0.92 0.84

0

2

4

6
1e6

4.74

2.57 2.30 2.64 2.38 2.60
2.15 2.03

0

1

2

C
AI

D
A

1e6

1.24
0.90

0.65
0.91

1.22

2.21

0.51 0.47

0

2

4

6

1e6

4.10
3.03

2.18
3.05

4.29

5.54

1.58 1.39

0.0

0.5

1.0

1.5

1e7

0.53
0.42 0.34 0.42

0.70

1.35

0.28 0.26

No Replica
Naive Greedy

1.61x Greedy
Local Search

PCH
StarFront

MTOLS
MTLS

Figure 6: Evaluation of methods without oracle infor-
mation of demand. Predicted demand based on average
historical values is used for each method.

Table 1: Computation time of different methods on the
MAWI dataset.

Method Computation Time (sec)
No Replica 0.0

Naive Greedy 20.9
1.61x Greedy 30.1
Local Search 33.9

PCH 0.3
StarFront 13.8
MTOLS 495.3
MTLS 98,576.3

the same machine with Intel Xeon CPU E5-2690 v3 CPU and
220 GB memory size. Although the CPU has 24 vcores, we
limit the program to use only up to 1 vcore for comparison.
We find that MTOLS can have 200x speedup over MTLS by
incorporating orbit information. It can be further accelerated
using parallel execution. We can optimize the placement of
different content in parallel and make different processes to
handle different subsets in the DP phase in parallel.

6.2.5 Combining Different Satellite Constellations. We com-
pare the performance of three types of satellite networks:
LEO (Starlink), MEO (O3b), and GEO (ViaSat). Figure 7 vi-
sualizes the coverage map for these three types of satellites.
For a fair comparison, we set a unified minimum elevation
angle (10°) for all satellites. We also remove all gateways
from the network structure. The experiment is conducted
using a simulated dataset of requests from a 5x10 grid region
in the US over 4 hours, with a time slot gap of 5 minutes.
The results indicate that the choice of satellites depends

on storage cost factors and the chosen metric: either hop
count or latency. When storage cost factors for LEO, MEO,

Figure 7: The coverage map of one Starlink (LEO), O3b
(MEO), and ViaSat (GEO) satellite, colored in red, green,
and blue, respectively. We set the minimum elevation
angle to 10 degree for all satellites for fair comparison.

Table 2: The results of integrating MEO and GEO in
the network, with MTLS determining satellite selec-
tion based on different storage cost factors. The results
include query cost, replication cost, and storage cost in
the last three columns, with the time ratio of MEO and
GEO usage shown in the "MEO" and "GEO" columns.

𝛾𝑚𝑒𝑜 𝛾𝑔𝑒𝑜 MEO GEO Qry. Rep. Sto.
0 10 100.0% 0.0% 18,060 300 0
0.5 10 100.0% 0.0% 18,060 300 18
1 10 38.9% 61.1% 18,010 150 234
2 10 19.4% 80.6% 18,000 100 304
3 10 0.0% 100.0% 18,000 50 360
5 10 0.0% 100.0% 18,000 50 360
10 10 0.0% 100.0% 18,000 50 360

Table 3: The results of integrating LEO and MEO in
the network, with MTLS determining satellite selec-
tion. We set different storage cost factor 𝛾 for LEO and
MEO: 𝛾𝑙𝑒𝑜 = 1, and 𝛾𝑚𝑒𝑜 = 25. The results include query
cost, replication cost, and storage cost in the last three
columns, with the time ratio of LEO and MEO usage
shown in the "LEO" and "MEO" columns.

Region LEO MEO Qry. Rep. Sto.
1x2 100.0% 0.0% 24,000 1,200 48
2x4 39.6% 60.4% 24,000 600 744
3x6 2.1% 97.9% 24,000 300 1,176
4x8 2.1% 97.9% 24,016 300 1,176
5x10 2.1% 97.9% 24,080 450 1,176

and GEO are identical, the preferred network is GEO for hop
count metric because of its large coverage range, and LEO
for latency metric due to its close distance to the ground.

Evaluation using the hop count metric with different stor-
age cost factors for MEO and GEO shows that a reduction in
MEO’s storage cost factor leads to more frequent use of MEO,
as shown in Table 2. The coverage areas of MEO and GEO

8

Optimize Replica Server Placement in a
Satellite Network SIGCOMM’23, September 10-14, 2023, New York City, US

O3B[18]

t = 300s

O3B[18]

t = 1200s

STARLINK[25,6]

O3B[18]

t = 2100s

O3B[13]

t = 3000s

O3B[13]

t = 3900s

O3B[13]

t = 4800s

STARLINK[48,4]

O3B[9]

t = 5700s

O3B[9]

t = 6300s

Figure 8: We put LEO and MEO satellites in the same network, and let MTLS decides which kind of satellites to use.
We set different storage cost factor 𝛾 for LEO and MEO: 𝛾𝑙𝑒𝑜 = 1, and 𝛾𝑚𝑒𝑜 = 50. In this scenario, LEO satellites and
MEO satellites can be cooperatively deployed as replicas to cover all of the demand.

−6
0

−5
0

−4
0

−3
0

−2
0

−1
0 0 10 20 30 40 50 60

Latitude

7250

7500

7750

To
ta

l C
os

t

−1
80

−1
50

−1
20 −9

0
−6

0
−3

0 0 30 60 90 12
0

15
0

18
0

Longitude

7450

7500

To
ta

l C
os

t

Figure 9: One client is set at different locations and
MTLS is used to calculate total cost for serving it. We
place the client at longitude = 0◦ with different lati-
tudes, and also latitude = 40◦ with different longitudes.

satellites are similar, however, MEO satellites move slowly
and require content replication to the next satellite when
moving away from the US. The likelihood of using MEO
increases when the reduction in storage cost compensates
for the increase in replication cost.
MEO has a larger coverage area than LEO. We examine

the impact of the geographical distribution of demand on
satellite selection by limiting demand to 1x2, 2x4, 3x6, 4x8,
and 5x10 out of the 5x10 grid region. Storage cost factors
of LEO and MEO are set at 1 and 25, respectively. Table 3
shows that LEO is preferred for serving small regions of
demand, while MEO is preferred for serving larger regions.
Meanwhile, if the storage cost of LEO is low enough, both
LEO and MEO can be cooperatively deployed as shown in
Figure 8.

0.7

0.8

0.9

1.0

1.1

1.2

H
op

 C
ou

nt

1e5

1.06

1.14

0.97

MAWI

2.5

3.0

3.5

4.0

4.5
1e5

2.98

4.23

2.98

Wikipedia

2.5

3.0

3.5

4.0

4.5
1e5

4.17

3.82

3.52

CAIDA

Only Satellites Only Gateways Satellites + Gateways

Figure 10: Results of limiting MTLS to choose replicas
only from gateways or only from satellites. Hop count
is used as a metric.

6.2.6 Effects of Geographical Locations. We study the to-
tal cost for serving a single client placed at varying latitudes
and longitudes using MTLS with only Starlink satellites and
no gateways. Figure 9 shows that higher latitudes have less
total cost than lower latitudes, which is likely due to the in-
creased visibility of satellites [32]. However, increased total
cost at very high latitude (larger than 50◦ or less than −50◦)
is likely due to proximity to the service border of Starlink
satellites. No obvious trends are observed for longitudes.

6.2.7 Effects of gateways. To examine the impact of gate-
ways, we maintain the same network structure but force
the algorithm to deploy replicas only on gateways or only
on satellites. Figure 10 shows that using both gateways and
satellites is preferred for the MAWI and CAIDA datasets. On
the Wikipedia dataset, utilizing only satellites is sufficient.
The reason is that the requests of the Wikipedia dataset are
concentrated in the US and LEO satellites alone are sufficient
to cover its demands. One limitation of a satellite replica
is its limited coverage area. This disadvantage is mitigated

9

SIGCOMM’23, September 10-14, 2023, New York City, US Paper # 461, 12 pages + references

0% 50% 100%

−10.0%

−5.0%

0.0%
Total Cost

0% 50% 100%
−15.0%

−10.0%

−5.0%

0.0%

Query Cost

0% 50% 100%
−20.0%

−10.0%

0.0%

10.0%

20.0%

Replication Cost

0% 50% 100%

−40%

−20%

0%
Storage Cost

satellite storage = 10x
satellite storage = 15x

satellite storage = 20x
satellite storage = 25x

satellite storage = 30x

Figure 11: Results of adding new gateways near clients. In the experiment, we place new gateways near 0%, 25%,
50%, 75%, and 100% of the clients. Satellite storage is set to be 10, 15, 20, 25, and 30 times of gatway storage. CAIDA
is used as the assessed dataset and hop count is employed as the metric.

in the case of concentrated requests, e.g., on the Wikipedia
dataset. The tradeoff between gateways and satellites is that
satellites can provide less latency, less hop count but larger
storage cost and moving coverage area, while gateways can
provide smaller storage cost, static coverage area but more
latency and hop count.
We further evaluate the impact of adding gateways to a

satellite network using the CAIDA dataset. We use hop count
as the metric. Figure 11 demonstrates that adding gateways
reduces the overall cost especially when the cost of satellite
storage is much higher than gateway storage. With moderate
satellite storage costs (e.g., 10× or 15×), satellites are used as
intermediate transfer points: The replica is first transmitted
to a satellite, then the satellite travels to a specific region, and
finally the replica is unloaded from the satellite to a gateway
in that region, thereby reducing the replication cost. Our
automatically generated solution is similar to the proposal in
[14]. But different from [14], our algorithm is more general
and can adapt to different scenarios. The above strategy
is less preferred when the satellite storage becomes more
expensive (e.g., 20x, 25x, 30x). In this case, our algorithm
prioritizes deploying replicas on more gateways, which leads
to increased replication cost but decreased query cost.

6.2.8 Video Delivery. We test the performance of differ-
ent methods for video delivery. We create video demand
by randomly generating video chunk downloading requests
and assigning them to different states of the US according to
population distribution. We exclude Alaska and Hawaii.

The download time of each chunk is calculated as the sum
of propagation delay and transmission delay, where propaga-
tion delay is determined by distance and transmission delay
is determined by chunk size and throughput. We assume 20
Gbps for terrestrial links and 10 Gbps for satellite links.
Besides redirecting the user to the closest server, we use

round robin and weighted round robin for redirection. We

take 𝑛 = 3 for these 2 strategies. For weighted round robin,
the 3 closest replicas will get 4

7 ,
2
7 , and

1
7 traffic, respectively.

Table 4 summarizes our results. MTOLS and MTLS usually
have better QoE than the baselines because our methods can
generate relatively well-distributed replicas, which results in
a more balanced traffic distribution in the network. Although
the local search has lowest traffic but it results from its low
QoE. The traffic of our methods is lower than all baselines
except local search when "closest" or weighted round robin is
used as the traffic strategy. For most algorithms, a weighted
round robin is better than "closest" and round robin.

6.3 System Evaluation
We run our network probe depicted in Figure 3 within a
satellite network provided by Starlink RV in Texas. The net-
work trace shows that the bandwidth to the origin server is
4.90±1.12 Mbps, while the bandwidth to the closest Akamai
server is 11.76±3.11 Mbps. The latency between our client
and the closest Starlink ground station is 129.79±92.2 ms.
We apply the trace to the connections between the clients
and servers in our prototype system. Our origin server is
provided by a cloud server and is located in Asia. It has 16GB
memory and 2 CPU vcores. Our client machine is in Texas
with 64GB memory and 24 CPU vcores.

6.3.1 Web Browsing Results. In order to optimize the web
browsing experience, real-world CDNs are utilized to host
static web content, such as images, CSS files, HTML docu-
ments, and fonts on replicas to minimize the page load time
experienced by end users. Our study assesses the proposed
system’s performance for web browsing by letting clients
download a static item of size 16KB from the servers in our
prototype system. We generate simulated requests from the
top 50 populated cities on Earth. The replica placement is
determined by applying various algorithms to the dataset.
The resulting replicas are deployed in the server pool, and

10

Optimize Replica Server Placement in a
Satellite Network SIGCOMM’23, September 10-14, 2023, New York City, US

Table 4: The results of the simulated video delivery. The Mean QoE denotes the average quality of experience at
each time slot, and the Traffic GB indicates the cumulative transmitted traffic in all links. If one piece of content is
transmitted through multiple links, the traffic will be counted for multiple times.

Method Replica Num Closest Round Robin Weighted Round Robin
Mean QoE Traffic GB Mean QoE Traffic GB Mean QoE Traffic GB

No Replica 1.0 1.70 963,159 1.70 963,159 1.70 963,159
Naive Greedy 6.5 5.40 308,808 4.19 405,530 5.12 404,049
1.61x Greedy 11.4 6.25 320,389 5.40 425,899 6.28 412,831
Local Search 5.3 4.82 293,368 3.35 376,532 4.29 387,299

PCH 18.5 6.41 304,255 6.33 416,780 6.89 397,025
StarFront 26.0 3.18 318,911 4.75 476,172 4.51 447,326
MTOLS 16.9 6.63 295,152 6.59 416,093 7.12 389,084
MTLS 18.3 6.63 295,313 6.54 418,526 7.08 389,732

clients in the user pool are instructed to request from the
servers. The download time is recorded and is presented in
Table 5. The cumulative distribution function (CDF) plot of
download time is also shown in Figure 12. Our methods have
the lowest total cost, and MTLS has the smallest median
download time. In addition, MTOLS exhibits a similar down-
load time to PCH, but with a more efficient deployment of
25.0 replicas compared to PCH’s 34.9 replicas.

6.3.2 Video Streaming Results. Furthermore, we also eval-
uate the performance of our system for video streaming. We
adopt similar settings to Section 6.2.8 but make the following
two modifications to the settings: (1) we limit the capacity
of each server to 96 Mbps, instead of applying a capacity
limit on connections, and (2) we randomize the start time for
each user’s video stream. This allows us to reduce the total
number of concurrent requests and make the experiments
practicable on our machines. Table 6 summarizes our results.
Our methods – MTOLS and MTLS out-perform the other
algorithms in terms of total cost and QoE. While MTOLS and
MTLS have similar query costs (2055 and 2025), they differ
in terms of replication cost (343 and 250) and QoE (9.00 and
9.15). Our hypothesis is that optimizing the replication cost
in the network can lead to a more balanced distribution of
traffic, thereby improving the overall QoE.

6.4 Summary
In summary, in Section 6.2.2, 6.2.3, and 6.2.4, we demonstrate
that MTOLS and MTLS proposed in this paper can generate
better replication with lower total cost than all the baselines.
Our methods are robust when future demand information is
unknown and predicted demand is used. MTLS has a long
computation time but MTOLS is much faster. These two
methods can be further accelerated through parallel execu-
tion. In Section 6.2.5, 6.2.6, 6.2.7, and 6.2.8, we also reveal
key insights for optimizing in different satellite network set-
tings, such as the benefits of combining LEO, MEO, and GEO

Table 5: Performance comparison of various methods
for web browsing in the prototype system. The down-
load time of a file from the server is measured. Median
download time is recorded and represented as "Time
(ms)". The average number of deployed replicas in each
time slot is represented as "Num". StarFront[MTLS]
and StarFront[MTOLS] indicate that we align the num-
ber of replicas set by StarFront to be the same with
MTLS and MTOLS.

Method Total Cost Time (ms) Num
No Replica 29,241,304.1 2,093.3 1.0

Naive Greedy 211,829.0 179.8 8.3
1.61x Greedy 185,017.8 154.4 10.9
Local Search 262,370.6 188.1 4.4

PCH 188,536.3 111.9 34.9
StarFront 192,022.7 129.5 43.0

StarFront [MTOLS] 177,399.1 140.7 26.0
StarFront [MTLS] 186,532.7 133.5 38.0

MTOLS 102,664.6 112.4 25.0
MTLS 87,665.2 99.7 37.5

100 150 200 250 300 350 400 450 500
Request Time (ms)

0%

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge Naive Greedy
A 1.61x Approx Greedy
Local Search
PCH
StarFront
StarFront [MTOLS]
StarFront [MTLS]
MTOLS
MTLS

Figure 12: CDF plot of download time of differentmeth-
ods in real implemented system.

11

SIGCOMM’23, September 10-14, 2023, New York City, US Paper # 461, 12 pages + references

Table 6: Performance comparison of various methods
for video streaming in the prototype system. The aver-
age number of deployed replicas in each time slot was
represented as "Num". StarFront[Aligned] means we
align the number of replicas set by StarFront to be the
same with MTLS and MTOLS.

Method Total Cost Mean QoE Num
No Replica 30628.5 1.56 1.0

Naive Greedy 2612.1 8.00 6.3
1.61x Greedy 2431.3 8.74 8.2
Local Search 3058.2 7.23 4.8

PCH 2714.8 8.93 17.6
StarFront 3634.6 8.70 29.0

StarFront [Aligned] 4386.2 6.84 11.0
MTOLS 2403.5 9.00 10.4
MTLS 2281.0 9.15 10.8

satellites, the impact of user latitude, the importance of co-
locating replicas on both gateways and satellites, and the
advantages of using weighted round robin strategy in the
video delivery scenario. In Section 6.3, we further demon-
strate the effectiveness of our methods using a prototype
implementation for both web browsing and video streaming
using real traces collected from the Starlink network.

7 LIMITATIONS
In this section, we describe a few limitations of our work.
First, our synthetic trace could be further improved to pro-
duce more realistic traces, such as modeling the spatial and
temporal correlation between user demands and satellite
throughput fluctuation. Second, we can further improve the
diversity of our satellite and Web traces for a more com-
prehensive evaluation. Last but not least, there are several
practical considerations that must be addressed before our
methods can be deployed in the real world. In order to re-
alize our proposed system in the real world, new satellites
with storage and computing device must be available. More-
over, we need to optimize DNS servers to reduce DNS query
overhead.

8 RELATEDWORK
The existing work can be broadly classified into (i) CDN
optimization, and (ii) satellite networks.
Replica Placement for Traditional CDN: Optimizing
CDN server placement has attracted significant research.
They aim to optimize the placement of the server replicas or
individual content under certain constraints (e.g., bandwidth,
latency, the number of replicas). They formulate the problems
as theoretical models, including facility location [42, 49, 54],
K-median [27, 28, 39, 50], K-center [21, 22], K-cache [23], etc.
In general, the placement problems are NP-hard. Various

algorithms have been proposed. They differ in terms of per-
formance metrics, types of constraints, target networks, and
effectiveness. Refer to [44] for a detailed survey. These algo-
rithms all target for static networks and can not be applied
to LEO or MEO satellite networks. [25] and [37] consider
replica server or cache placement in LEO network but our
methods can outperform them a lot as shown in the evalu-
ation section. Moreover, our work explicitly leverages the
orbit information to enhance both scalability and effective-
ness and supports not only web pages but also video content,
not only LEO but also MEO, LEO and their combinations.
Satellite Network: Recently there is a surge of interest in
LEO satellite networks as the launch and hardware cost of
LEO satellites rapidly decreases. A number of works are
devoted to simulating, measuring and understanding LEO
networks, such as NOAA, Starlink, and OneWeb. For exam-
ple, [31] develops a simulator for Starlink and shows that
it can provide lower latency than a terrestrial optical fiber
network over 3000 km. [24] develops StarPerf to simulate
mega-constellation and uses it to drive the design of con-
stellation and relay selection. [30] analyzes the impact of
inter-satellite links and reports that these links can signifi-
cantly improve the performance of LEO networks.
[52] proposes adding low-cost ground stations that are

only download capable to a LEO network, and develops a rate
adaptation algorithm to support links without ACK feedback.
[45] proposes to develop a technique that allows multiple
nearby low-cost ground stations to collaboratively recover
the LEO satellite signals. It reports 8 dB SNR increase over
a large commercial receiver. [26] improves the delay and
throughput in LEO networks by leveraging links between
many satellites and ground stations. [1] proposes SPACERTC
to select nodes for relaying real-time traffic and allocates
the flows to reduce latency. [14] proposes a hybrid backhaul
solution using a combination of terrestrial and satellite net-
works to reduce the placing time of popular content in 5G
edge nodes. [25] is the closest related work to ours and also
studies replica placement. As shown in our evaluation, our
approach significantly outperforms [25].

9 CONCLUSION
In this paper, we develop novel replica servers for satellite
networks. We leverage the deterministic satellite movement
trajectories along with the user demands to move content
close to the users when needed. Using both synthetic and
real measurements from StarLink, we evaluate our approach
across diverse network scenarios. Our results show our place-
ment yields 16.91% to 53.26% reduction in the total cost while
maintaining low query latency and high video QoE. Using
prototype implementation and experiments, we further show
the feasibility and effectiveness of our approach.

12

Optimize Replica Server Placement in a
Satellite Network SIGCOMM’23, September 10-14, 2023, New York City, US

REFERENCES
[1] 2022. SpaceRTC: Unleashing the Low-latency Potential of Mega-

constellations for Real-Time Communications. In Proc. of IEEE IN-
FOCOM.

[2] 2022. SpaceX’s first-Gen Starlink Fleet halfway complete after back-
to-back launches. https://t.ly/Qn_G. (2022).

[3] 2023. CAIDA catalog. (2023). https://catalog.caida.org/
[4] 2023. FCC approves Amazon’s satellite broadband plan over

SpaceX’s objections. https://arstechnica.com/tech-policy/2023/02/
fcc-approves-amazons-satellite-broadband-plan-over-spacexs-objections/.
(2023).

[5] 2023. OneWeb of 600 internet satellites in space. https://www.dw.com/
en/oneweb-of-600-internet-satellites-in-space/a-47690785. (2023).

[6] 2023. Viasat (American company). https://en.wikipedia.org/wiki/
Viasat_(American_company). (2023).

[7] Vijay Kumar Adhikari, Yang Guo, Fang Hao, Matteo Varvello, Volker
Hilt, Moritz Steiner, and Zhi-Li Zhang. 2012. Unreeling netflix: Under-
standing and improving multi-cdn movie delivery. In 2012 Proceedings
IEEE INFOCOM. IEEE, 1620–1628.

[8] Vijay Arya, Naveen Garg, Rohit Khandekar, Adam Meyerson, Kamesh
Munagala, and Vinayaka Pandit. 2001. Local search heuristic for k-
median and facility location problems. In Proceedings of the thirty-third
annual ACM symposium on Theory of computing. 21–29.

[9] Thomas Barnett, Shruti Jain, Usha Andra, and Taru Khurana. 2018.
Cisco visual networking index (vni) complete forecast update, 2017–
2022. Americas/EMEAR Cisco Knowledge Network (CKN) Presentation
(2018), 1–30.

[10] Jaroslaw Byrka. 2007. An optimal bifactor approximation algorithm
for the metric uncapacitated facility location problem. In Approxima-
tion, Randomization, and Combinatorial Optimization. Algorithms and
Techniques: 10th International Workshop, APPROX 2007, and 11th Inter-
national Workshop, RANDOM 2007, Princeton, NJ, USA, August 20-22,
2007. Proceedings. Springer, 29–43.

[11] cdfperf 2023. CDN performance. (2023). www.cdnperf.com.
[12] Aizaz U Chaudhry and Halim Yanikomeroglu. 2021. Laser intersatellite

links in a starlink constellation: A classification and analysis. IEEE
Vehicular Technology Magazine 16, 2 (2021), 48–56.

[13] Robert A Divine and Robert Alexander Divine. 1993. The sputnik
challenge. Oxford University Press.

[14] Alexis A Dowhuszko, Juan Fraire, Musbah Shaat, and Ana Pérez-Neira.
2020. LEO satellite constellations to offload optical terrestrial networks
in placement of popular content in 5G edge nodes. In 2020 22nd Inter-
national Conference on Transparent Optical Networks (ICTON). IEEE,
1–6.

[15] Barry G Evans, Paul T Thompson, Giovanni E Corazza, Alessandro
Vanelli-Coralli, and Enzo Alberto Candreva. 2011. 1945–2010: 65 years
of satellite history from early visions to latest missions. Proc. IEEE 99,
11 (2011), 1840–1857.

[16] Mohinder S Grewal, Lawrence R Weill, and Angus P Andrews. 2007.
Global positioning systems, inertial navigation, and integration. John
Wiley & Sons.

[17] Anupam Gupta and Kanat Tangwongsan. 2008. Simpler analy-
ses of local search algorithms for facility location. arXiv preprint
arXiv:0809.2554 (2008).

[18] Mark Handley. 2019. Using ground relays for low-latency wide-area
routing inmegaconstellations. In Proceedings of the 18th ACMWorkshop
on Hot Topics in Networks. 125–132.

[19] Jinhui Huang and Jiang Cao. 2020. Recent development of commercial
satellite communications systems. In Artificial Intelligence in China:
Proceedings of the International Conference on Artificial Intelligence in
China. Springer, 531–536.

[20] Kamal Jain, Mohammad Mahdian, Evangelos Markakis, Amin Saberi,
and Vijay V Vazirani. 2003. Greedy facility location algorithms ana-
lyzed using dual fitting with factor-revealing LP. Journal of the ACM
(JACM) 50, 6 (2003), 795–824.

[21] Sugih Jamin, Cheng Jin, Yixin Jin, Danny Raz, Yuval Shavitt, and Lixia
Zhang. 2000. On the placement of internet instrumentation. In Proceed-
ings IEEE INFOCOM 2000. Conference on Computer Communications.
Nineteenth Annual Joint Conference of the IEEE Computer and Commu-
nications Societies (Cat. No. 00CH37064), Vol. 1. IEEE, 295–304.

[22] Yichao Jin, Yonggang Wen, and Kyle Guan. 2016. Toward cost-efficient
content placement in media cloud: Modeling and analysis. IEEE Trans-
actions on Multimedia 18, 5 (2016), 807–819.

[23] Paddy Krishnan, Danny Raz, and Yuval Shavitt. 2000. The cache
location problem. IEEE/ACM transactions on networking 8, 5 (2000),
568–582.

[24] Zeqi Lai, Hewu Li, and Jihao Li. 2020. StarPerf: Characterizing Network
Performance for Emerging Mega-Constellations. In Proc. of ICNP.

[25] Zeqi Lai, Hewu Li, Qi Zhang, Qian Wu, and Jianping Wu. 2021. Coop-
eratively Constructing Cost-Effective Content Distribution Networks
upon Emerging Low Earth Orbit Satellites and Clouds. In Proc. of ICNP.
IEEE, 1–12.

[26] Z. Lai, Q. Wu, H. Li, M. Lv, and J. Wu. 2021. OrbitCast: Exploiting
Mega-Constellations for Low-Latency Earth Observation. In Proc. of
IEEE ICNP.

[27] Nikolaos Laoutaris, Georgios Smaragdakis, Konstantinos Oikonomou,
Ioannis Stavrakakis, and Azer Bestavros. 2007. Distributed placement
of service facilities in large-scale networks. In IEEE INFOCOM 2007-
26th IEEE International Conference on Computer Communications. IEEE,
2144–2152.

[28] N. Laoutaris, G. Smaragdakis, K. Oikonomou, I. Stavrakakis, and A.
Bestavros. 2007. Distributed Placement of Service Facilities in Large-
Scale Networks. In Proc. of INFOCOM.

[29] Shi Li. 2013. A 1.488 approximation algorithm for the uncapacitated
facility location problem. Information and Computation 222 (2013),
45–58.

[30] Y. Li, H. Li, L. Liu, W. Liu, J. Liu, J. Wu, Q. Wu, J. Liu, and Z. Lai. 2021.
Internet in Space for Terrestrial Users via Cyber-Physical Convergence.
In Proc. of ACM HotNets.

[31] booktitle = Mark Handley“. [n. d.]. Delay is Not an Option: Low
Latency Routing in Space.

[32] Jonathan C McDowell. 2020. The low earth orbit satellite population
and impacts of the SpaceX Starlink constellation. The Astrophysical
Journal Letters 892, 2 (2020), L36.

[33] François Michel, Martino Trevisan, Danilo Giordano, and Olivier
Bonaventure. 2022. A first look at starlink performance. In Proceedings
of the 22nd ACM Internet Measurement Conference. 130–136.

[34] Pitu B Mirchandani and Richard L Francis. 1990. Discrete location
theory.

[35] Erik Nygren, Ramesh K Sitaraman, and Jennifer Sun. 2010. The akamai
network: a platform for high-performance internet applications. ACM
SIGOPS Operating Systems Review 44, 3 (2010), 2–19.

[36] Soohyun Park and Joongheon Kim. 2021. Trends in LEO satellite
handover algorithms. In 2021 Twelfth International Conference on Ubiq-
uitous and Future Networks (ICUFN). IEEE, 422–425.

[37] Tobias Pfandzelter and David Bermbach. 2021. Edge (of the Earth)
Replication: Optimizing Content Delivery in Large LEO Satellite Com-
munication Networks. In 2021 IEEE/ACM 21st International Symposium
on Cluster, Cloud and Internet Computing (CCGrid). IEEE, 565–575.

[38] Victor Le Pochat, Tom Van Goethem, Samaneh Tajalizadehkhoob,
Maciej Korczyński, and Wouter Joosen. 2018. Tranco: A research-
oriented top sites ranking hardened against manipulation. arXiv
preprint arXiv:1806.01156 (2018).

13

https://t.ly/Qn_G
https://catalog.caida.org/
https://arstechnica.com/tech-policy/2023/02/fcc-approves-amazons-satellite-broadband-plan-over-spacexs-objections/
https://arstechnica.com/tech-policy/2023/02/fcc-approves-amazons-satellite-broadband-plan-over-spacexs-objections/
https://www.dw.com/en/oneweb-of-600-internet-satellites-in-space/a-47690785
https://www.dw.com/en/oneweb-of-600-internet-satellites-in-space/a-47690785
https://en.wikipedia.org/wiki/Viasat_(American_company)
https://en.wikipedia.org/wiki/Viasat_(American_company)
www.cdnperf.com
asus
高亮

SIGCOMM’23, September 10-14, 2023, New York City, US Paper # 461, 12 pages + references

[39] Lili Qiu, Venkata N. Padmanabhan, and Geoffrey M. Voelker. 2001. On
the Placement of Web Server Replicas. In Proc. of INFOCOM.

[40] Zhicheng Qu, Gengxin Zhang, Haotong Cao, and Jidong Xie. 2017.
LEO satellite constellation for Internet of Things. IEEE access 5 (2017),
18391–18401.

[41] P Krishna Rao, Susan J Holmes, Ralph K Anderson, Jay S Winston, and
Paul E Lehr. 1990. Weather satellites: Systems, data, and environmental
applications. (1990).

[42] Georgios Rodolakis, Stavroula Siachalou, and Leonidas Georgiadis.
2006. Replicated server placement with QoS constraints. IEEE Trans-
actions on Parallel and Distributed Systems 17, 10 (2006), 1151–1162.

[43] Jagruti Sahoo, Mohammad A Salahuddin, Roch Glitho, Halima Elbiaze,
and Wessam Ajib. 2016. A survey on replica server placement algo-
rithms for content delivery networks. IEEE Communications Surveys
& Tutorials 19, 2 (2016), 1002–1026.

[44] Jagruti Sahoo, Mohammad A. Salahuddin, Roch Glitho, Halima Elbi-
aze, and Wessam Ajib. 2016. A Survey on Replica Server Placement
Algorithms for Content Delivery Networks. IEEE Communications
Surveys and Tutorials (2016).

[45] V. Singh, A. Prabhakara, D. Zhang, O. Yagan, and S. Kumar. 2021. A
community-driven approach to democratize access to satellite ground
stations. In Proc. of ACM MobiCom.

[46] Zhenyu Song, Daniel S Berger, Kai Li, and Wyatt Lloyd. 2020. Learn-
ing relaxed belady for content distribution network caching. In 17th
USENIX Symposium on Networked Systems Design and Implementation.

[47] Kevin Spiteri, Rahul Urgaonkar, and Ramesh K Sitaraman. 2020. BOLA:
Near-optimal bitrate adaptation for online videos. IEEE/ACM Transac-
tions On Networking 28, 4 (2020), 1698–1711.

[48] Yongtao Su, Yaoqi Liu, Yiqing Zhou, Jinhong Yuan, Huan Cao, and
Jinglin Shi. 2019. Broadband LEO satellite communications: Architec-
tures and key technologies. IEEE Wireless Communications 26, 2 (2019),
55–61.

[49] Jihoon Sung, Minseok Kim, Kyongchun Lim, and June-Koo Kevin Rhee.
2013. Efficient cache placement strategy for wireless content delivery
networks. In 2013 International Conference on ICT Convergence (ICTC).
IEEE, 238–239.

[50] Michal Szymaniak, Guillaume Pierre, and Maarten Van Steen. 2006.
Latency-driven replica placement. IPSJ Digital Courier 2 (2006), 561–
572.

[51] the WIDE Project. [n. d.]. MAWI Working Group Traffic Archive. ([n.
d.]). https://mawi.wide.ad.jp/mawi/

[52] Deepak Vasisht, Jayanth Shenoy, and Ranveer Chandra. [n. d.]. L2D2:
Low Latency Distributed Downlink for Low Earth Orbit Satellites.

[53] Limin Wang, Vivek Pai, and Larry Peterson. 2002. The effectiveness
of request redirection on CDN robustness. ACM SIGOPS Operating
Systems Review 36, SI (2002), 345–360.

[54] Hao Yin, Xu Zhang, Tongyu Zhan, Ying Zhang, Geyong Min, and
Dapeng Oliver Wu. 2013. NetClust: A framework for scalable and
pareto-optimal media server placement. IEEE Transactions on Multi-
media 15, 8 (2013), 2114–2124.

[55] Xiaoqi Yin, Abhishek Jindal, Vyas Sekar, and Bruno Sinopoli. 2015. A
control-theoretic approach for dynamic adaptive video streaming over
HTTP. In Proceedings of the 2015 ACM Conference on Special Interest
Group on Data Communication. 325–338.

14

https://mawi.wide.ad.jp/mawi/

	Abstract
	1 Introduction
	2 Background
	2.1 Content Distribution Network (CDN)
	2.2 Satellite Networks

	3 Our Approach
	3.1 Problem Formulation
	3.2 Our Replication Algorithms

	4 Practical Considerations
	5 System Implementation
	6 Evaluation
	6.1 Experiment Setup
	6.2 Algorithm Evaluation
	6.3 System Evaluation
	6.4 Summary

	7 Limitations
	8 Related Work
	9 Conclusion
	References

