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Hierarchical Clustering

Data mining, statistics: build a hierarchy of clusters greedily
o Agglomerative: bottom-up

@ Divisive: top-down

Step O
En
[

Agglomerative Clustering

Divisive Clustering

123456

Topdown Approach

Bottom-up Approach

(a) Agglomerative (b) Divisive
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Hierarchical Clustering

Single Linkage Complete Linkage
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Application - Community Detection

(a) Community (b) Hierarchical tree

[For10]: Community detection in graphs
Citations: 13112
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Application - Biology

AP =
Mgy A

(a) Human tumor (b) Tumor: diff. linkages (c) DNA

[HTFFO09]: Elements of statistical learning
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Application - Others

Clustered Iris data set
(the labels give the true flower species)

B vigrica
B versicoler
B setosa
° L] Hierarchical Clustering
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Annotation foal
& image name. 2] horse
Pruning I
O None. [ calf
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~—goat
Selection kid
© Manual lamb
Height ratio: 55.5% 4 sheep
TooN: 3 : hen
rooster
Zoom duck
goose
turkey
oupt chick
2 Append cluster Ds (-] duckiing
Name: Cluster dog
Place:  Metavariable [ cat
Send Automatically rabbit
T T T Save Image Report 0.8 0.6 0.4 0.2 0
7 ] 5 4 3 2 1 ]
(a) Iris clusters (b) Software suite
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Single Linkage Clustering

@ Input: connected, weighted graph G = (V/,E), distance

@ SLC: bottom-up hierarchical clustering
combine two closest clusters
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Single Linkage Clustering

@ Input: connected, weighted graph G = (V/, E), distance
@ SLC: bottom-up hierarchical clustering

combine two closest clusters
e Example: V ={a,b,c,d,e}

wj: j-th smallest weight on MST
cost,: sum of the costs of spanning trees within k clusters

W1:1, W2:]_, W3:2, W4:3
cost(MST) = wy + wa + w3 + wy
=7
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Single Linkage Clustering

@ Input: connected, weighted graph G = (V/, E), distance
@ SLC: bottom-up hierarchical clustering

combine two closest clusters
e Example: V ={a,b,c,d,e}

wj: j-th smallest weight on MST
cost,: sum of the costs of spanning trees within k clusters J

wi=1l w=1 w3=2, wy=3
# of clusters=5

costs =0
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Single Linkage Clustering

@ Input: connected, weighted graph G = (V/, E), distance
@ SLC: bottom-up hierarchical clustering

combine two closest clusters
e Example: V ={a,b,c,d,e}

wj: j-th smallest weight on MST
cost,: sum of the costs of spanning trees within k clusters J

wi=1 w=1 w3=2, wu=3
# of clusters =4
costg = wy

=1
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Single Linkage Clustering

@ Input: connected, weighted graph G = (V/, E), distance
@ SLC: bottom-up hierarchical clustering

combine two closest clusters
e Example: V ={a,b,c,d,e}

wj: j-th smallest weight on MST
cost,: sum of the costs of spanning trees within k clusters J

wi=1 w=1 w3=2, wg=3
# of clusters=3
costz = wy + wop

=2
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Single Linkage Clustering

@ Input: connected, weighted graph G = (V/, E), distance
@ SLC: bottom-up hierarchical clustering

combine two closest clusters
e Example: V ={a,b,c,d,e}

wj: j-th smallest weight on MST
cost,: sum of the costs of spanning trees within k clusters J

W1:]_, W2:]_, W322, W4:3
# of clusters =2
costy) = wy + wo + w3

=4
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Single Linkage Clustering

@ Input: connected, weighted graph G = (V/, E), distance
@ SLC: bottom-up hierarchical clustering

combine two closest clusters
e Example: V ={a,b,c,d,e}

wj: j-th smallest weight on MST
cost,: sum of the costs of spanning trees within k clusters J

W1:]_, W2:]_, W322, W4:3
# of clusters =1
costy = wy +wo 4+ w3 + wy

=7
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Single Linkage Clustering

@ Input: connected, weighted graph G = (V/, E), distance

@ SLC: bottom-up hierarchical clustering
combine two closest clusters

w;: j-th smallest weight on MST
cost,: sum of the costs of spanning trees within k clusters J
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Single Linkage Clustering

@ Input: connected, weighted graph G = (V,E), distance

@ SLC: bottom-up hierarchical clustering
combine two closest clusters

wj: j-th smallest weight on MST

costy= J”:_{‘ wj, sum of the costs of spanning trees within k clusters

cost(G):=Yk_qcosty = Y.7_;(n—j)w;, total clustering cost

Motivation:
@ cost, captures important structure

@ SLC minimizes these costs
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Single Linkage Clustering

@ Input: connected, weighted graph G = (V,E), distance

@ SLC: bottom-up hierarchical clustering
combine two closest clusters

wj: j-th smallest weight on MST

costy= J”:_{‘ wj, sum of the costs of spanning trees within k clusters

cost(G):=Yk_qcosty = Y.7_;(n—j)w;, total clustering cost

Motivation:
@ cost, captures important structure
@ SLC minimizes these costs

Naive solution: compute an MST in O(nd) time
Question: estimate cost(G) and costy in sublinear time?
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9 Results
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Main Results

W: max weight d: average degree  query model: adj. list

cost(G)' costy Lower bound

O ay: O(Wd)y Q¥ d)

3

T (14 &)-estimate of cost(G)
¥ Applying [CRTO5], one can get: (1+ ¢&)-estimate, O( d) queries
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Main Results

W: max weight d: average degree  query model: adj. list

cost(G)' costy Lower bound

O ay: O(Wd)y Q¥ d)

3

Succinct representation of the SLC estimates (costy,...,cost,) s.t.
Vk, recover costy in a short time, and on average a (1-+¢€) estimate

On average: Y], |costy — costy| < - cost(G) = £Y)_qcosty
Short time: in O(loglog W) time

T (14 &)-estimate of cost(G)
¥ Applying [CRTO5], one can get: (1+ ¢&)-estimate, O( d) queries
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© Proof Sketch
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CC: Connected Component

Step 1
Reduction = estimating # of CCs J

Pan Peng, Christian Sohler, Yi Xu SLC Costs in Sublinear Time



CC: Connected Component

Step 1
Reduction = estimating # of CCs J

Step 2
Estimate # of CCs = sample & BFS J
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CC: Connected Component

Step 1
Reduction = estimating # of CCs J
Step 2
Estimate # of CCs = sample & BFS J

[CRTO5]: é(ngd) queries
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CC: Connected Component

Step 1
Reduction = estimating # of CCs

Step 2
Estimate # of CCs = sample & BFS

Step 3

Apply binary search to accelerate
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CC: Connected Component

Step 1
Reduction = estimating # of CCs

Step 2
Estimate # of CCs = sample & BFS

Step 3
Apply binary search to accelerate

O(\é—ZWd) queries
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Step 1: Reduction

Definition
@ Gj: the subgraph containing edges with weight < j
@ ¢;: # of CCs within G;
@ nj: # of edges in the MST with weight =
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Step 1: Reduction

Definition
@ Gj: the subgraph containing edges with weight < j
@ ¢;: # of CCs within G;
@ nj: # of edges in the MST with weight =

n—1
cost(G) = ;(n— i) -w;
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Step 1: Reduction

Definition
@ Gj: the subgraph containing edges with weight < j
@ ¢;: # of CCs within G;
@ nj: # of edges in the MST with weight =

n—1
cost(G) =) (n—1i)-w
i=1
ny ni+n
=Y (n—i)-1+ Y (n—i)-2+...
i=1 i=m+1
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Step 1: Reduction

Definition
@ Gj: the subgraph containing edges with weight < j
@ ¢;: # of CCs within G;
@ nj: # of edges in the MST with weight =

Observation J

Yisenj=c—1
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Step 1: Reduction

Definition
@ Gj: the subgraph containing edges with weight < j
@ ¢;: # of CCs within G;
@ nj: # of edges in the MST with weight =

Observation
Yjsenj=c—1 J cost(G):Z(n—i)-w,-
i=1

ny ni+n

— Z(n—i)-l—l— Z (n—i)-2+...

i=1 i=n;+1

n—cy

=Y (n—i)1+...

i=1
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Step 1: Reduction

Definition
@ Gj: the subgraph containing edges with weight < j
@ ¢;: # of CCs within G;
@ nj: # of edges in the MST with weight =

Observation
Yisenj=c—1 J

n—1

cost(G)= ) (n—i)-w;
i=1
n(n—1) 1 %=1
=5 +§'_1(Cj_cj)
J:
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Step 2: Estimate # of CCs

Input: graph G and subgraph H
Output: ¢, estimated # of CCs in H

Algorithm: [CRTO5]

Pan Peng, Christian Sohler, Yi Xu SLC Costs in Sublinear Time



Step 2: Estimate # of CCs

Input: graph G and subgraph H
Output: ¢, estimated # of CCs in H

Algorithm: [CRTO05]
Q@ Sample
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Step 2: Estimate # of CCs

Input: graph G and subgraph H
Output: ¢, estimated # of CCs in H

Algorithm: [CRTO05]

@ Sample
@ BFS

Pan Peng, Christian Sohler, Yi Xu SLC Costs in Sublinear Time



Step 2: Estimate # of CCs

Input: graph G and subgraph H
Output: ¢, estimated # of CCs in H

Algorithm: [CRTO5]

@ Sample
@ BFS

» Recursively:

» Flip a coin

» Double # of
visited edges
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Step 2: Estimate # of CCs

Input: graph G and subgraph H
Output: ¢, estimated # of CCs in H

Algorithm: [CRTO5]

@ Sample
@ BFS

» Recursively:

» Flip a coin

» Double # of
visited edges
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Step 2: Estimate # of CCs

Input: graph G and subgraph H
Output: ¢, estimated # of CCs in H

Algorithm: [CRTO5]

@ Sample
@ BFS

» Recursively:

» Flip a coin

» Double # of
visited edges
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Step 2: Estimate # of CCs

Input: graph G and subgraph H
Output: ¢, estimated # of CCs in H

Algorithm: [CRTO5]

@ Sample
@ BFS

» Recursively:

» Flip a coin

» Double # of
visited edges
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Step 2: Estimate # of CCs

Input: graph G and subgraph H
Output: ¢, estimated # of CCs in H

Algorithm: [CRTO05]

@ Sample
@ BFS
» Recursively:
» Flip a coin
> Double # of
visited edges

Guarantee: [CRTO05]
o |E—c|<en
° 0()
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Step 2: Estimate # of CCs

Input: graph G and subgraph H
Output: ¢, estimated # of CCs in H
Algorithm: [CRTO05]
@ Sample
Q@ BFS
» Recursively:
» Flip a coin
» Double # of
visited edges

Guarantee: ours
o |[t—c|<
e-max{\/LW,c}

° O(\/S—zwd) queries

SLC Costs in Sublinear Time
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Step 3: Binary Search

<

2
cost(G) = "(nz_l) +Z}A:/I1 C’T

e Observation: ci,...,cyw € [1,n] is non-increasing
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Step 3: Binary Search

<

2
n(n—1 w-1 ¢ —
cost(G) = % +Yio
@ Observation: ci,...,cyw € [1,n] is non-increasing

n 1

-

C1C2  C3C4C5 Cg C7 Cg Cw-1
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Step 3: Binary Search

<

2
n(n—-1 W-16¢—
cost(G) = n(n-1) > ) —i—ZJ.:l L
@ Observation: ci,...,cyw € [1,n] is non-increasing

o Idea:
Divide [1,n] into intervals 1 =By <--- < By =n

Bi=n B, Bs B, B =1
51 C3 Co Cg Cw-1
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Step 3: Binary Search

<

2
n(n—-1 W-16¢—
cost(G) = n(n-1) > ) —i—ZJ.:l L
@ Observation: ci,...,cyw € [1,n] is non-increasing

o Idea:
Divide [1,n] into intervals 1 =By <--- < By =n

Bi=n B, Bs B, B =1
51 C3 Co Cg Cw-1

2_R.
cost(G) ~ @ +Y!1{# of elements within i-th interval} - 5i 5 &) J
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Step 3: Binary Search

<

2
n(n—1 w-1 ¢ —
cost(G) = % +Yio
@ Observation: ci,...,cyw € [1,n] is non-increasing
o ldea:
Divide [1,n] into intervals 1 =By <--- < By =n
Map each ¢; to its nearest interval endpoint

Bi=n B, Bs B, B =1
51 C3 Ce Cg Cw-1

2_R.
cost(G) ~ @ + I {# of elements within i-th interval} - 5i 5 &) J
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Step 3: Binary Search

<

2
n(n—1 w-1 ¢ —
cost(G) = % +Yio
@ Observation: ci,...,cyw € [1,n] is non-increasing
o ldea:
Divide [1,n] into intervals 1 =By <--- < By =n
Map each ¢; to its nearest interval endpoint

Bi=n B, Bs B, B =1
51 C3 Ce Cg Cw-1

2_R.
cost(G) ~ @ + I {# of elements within i-th interval} - 5i 5 &) J

Challenge: estimated ¢i,...,¢y may not be non-increasing
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Step 3: Binary Search

For ¢j € (Bj+1,Bi], let |& —¢j| = £-max{\/LW,cj}.
We further need: VCJ' S (Bi-i-la B,'], B; — Bi+1 = @(‘éj — Cj‘)
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Step 3: Binary Search

For ¢j € (Bj+1,Bi], let |& —¢j| = £-max{\/LW,cj}.
We further need: VCJ' S (Bi-i-la B,'], Bi—Biy1 = @(‘éj — Cj‘)
@ Too large: can't estimate ¢; well;

@ Too small: ¢; will locate in an interval far away
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Step 3: Binary Search

For ¢j € (Bj+1,Bi], let |& —¢j| = £-max{\/LW,cj}.
We further need: VCJ' S (Bi-i-la B,'], Bi—Biy1 = @(‘éj — Cj‘)
@ Too large: can't estimate ¢; well;

@ Too small: ¢; will locate in an interval far away

n n n
Br——— — Bix—(1-i€) B=1
1+e)} Vvw W

N PN j

Bi=n

n
Bi = Biy1 = €Biyq Bi —Bjy1 = T
- 0leq) =005 - ¢
=0(§ - gl
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Step 3: Binary Search

For ¢j € (Bj+1,Bi], let |& —¢j| = s-max{\/LW,cj}.
We further need: VCJ' S (Bi-i-la B,'], Bi—Biy1 = @(‘éj — Cj‘)
@ Too large: can't estimate ¢; well;

@ Too small: ¢; will locate in an interval far away

n n n
Bi~~—— -—— Bix—(@1-i-€¢) B=1
1+e)} Vvw W

N N j

Bi=n

n
Bi = Biy1 = €Biyq Bi —Bjy1 = T
- 0leq) =005 - ¢
=0(§ - gl

Remark: t = O(log W /¢)
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Estimate cost(

— - S . 2_B;
cost(G) = w +Y.!-1{# of elements within i-th interval} - ¥ J
Bi=n B, By B B =1
A
¢ C3 Ce Cg Cw-1
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Estimate cost(G)

—_

Bi

cost(G) = @ +Y.!-1{# of elements within i-th interval} - ’B?T_

B;=n B, B3 B, B, =1
¢ C3 Ce Cg Cw-1
Complexity
t = O(log W /¢)
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Estimate cost(G)

—_

cost(G) = @ +Y.!-1{# of elements within i-th interval} - %

By=n B, B; B, B=1
¢ C3 Ce Cg Cw-1

Complexity
t=0(logW/e) = O(t- \{?—zwd) = (N)(\{?—?d) queries
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Estimate cost(G)

— - S . 2_B;
cost(G) = w +Y.!-1{# of elements within i-th interval} - ¥ J
Bi=n B, By B B =1
e — e
¢ C3 Ce Cg Cw-1
Complexity

t=0(logW/e) = O(t- \{?—zwd) = (N)(\{?—?d) queries

Correctness
V¢ € (Bit1,Bi], Bi—Biv1=90(|¢ —¢jl)
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Estimate cost(G)

cost(G) = @ +Y.!-1{# of elements within i-th interval} - @ J
Bi=n B, Bs B, Be=1
A
C1 C3 Ce Cg Cw-1

Complexity

t=0(logW/e) = O(t- \{?—zwd) = (N)(\{?—?d) queries
Correctness

Vg € (Bit1,Bil, Bi—Bit1=0(|¢ )

= cost(G) achieves (1+ €) approximation ratio
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Estimating the Profile

Profile vector: (costy,costy,...,cost,)

Bi=n o B k B i B=1

g
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Estimating the Profile

Profile vector: (costy,costy,...,cost,)

Bi=n B k B B=1

* i

Main idea:
@ Pre-process in é(gd) time
@ PROFILEORACLE(K): return costy in O(logt) = O(loglog W) time
Q Y7_,|costy — cost| = cost(G) = £X.7_, costy
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@ Extension to Similarity Case
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SLC in the Similarity Case

@ Input: weight represents similarity between two nodes

@ SLC: combine two most similar clusters
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SLC in the Similarity Case

@ Input: weight represents similarity between two nodes

@ SLC: combine two most similar clusters

wj: j-th largest weight on MaxST
cost,: sum of the costs of spanning trees within k clusters J

wi=5 w=4 w3=3, wpg=2
cost(MaxST) = wy + wo + w3 + wy
=14
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SLC in the Similarity Case

@ Input: weight represents similarity between two nodes

@ SLC: combine two most similar clusters

wj: j-th largest weight on MaxST
costy: sum of the costs of spanning trees within k clusters J

wi=5 wp=4 w3=3, wg=2
# of clusters =5

costs =0
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SLC in the Similarity Case

@ Input: weight represents similarity between two nodes

@ SLC: combine two most similar clusters

wj: j-th largest weight on MaxST
cost,: sum of the costs of spanning trees within k clusters J

wi=5 w=4 wy3=3, wpg=2
# of clusters =4
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SLC in the Similarity Case

@ Input: weight represents similarity between two nodes

@ SLC: combine two most similar clusters

wj: j-th largest weight on MaxST
cost,: sum of the costs of spanning trees within k clusters J

wi=5 w=4 wy3=3, wpg=2
# of clusters=3
costz = wy + wop

=9
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Results in the Similarity Case

cost(G)  costy  Lower bound

O(gd) O(gFd)  Q(gd)
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Results in the Similarity Case

Main idea:
© G;j: subgraph with weights >  ¢;: # of CCsin G;
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Results in the Similarity Case

Main idea:
@ G;: subgraph with weights > j  ¢;: # of CCsin G;
i i+n—1)(n—c;
@ Reduction: cost(G) :Z‘Zl w
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Results in the Similarity Case

Main idea:
@ G;: subgraph with weights > j  ¢;: # of CCsin G;
i i+n—1)(n—c;
@ Reduction: cost(G) :Z‘Zl w

Remark:
@ W appears in every k-cluster

@ need new algorithm on n—¢;
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© Experiments
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Experiments

r: sample size for each estimate of # CC;

2.0
Spotify Gowalla
o015 History Italy
g
% 1.0 — —
a
g
© 0.5
00°50 160 150 200 250 300

parameter r

(a) Approx. ratio
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@ Conclusion
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Recall: Our Results

Summary
W: max weight d: average degree  query model: adj. list

Setting cost(G)' costi Lower bound

Distance Case é(é—?d) O(\/g—?d) Q(‘/S—QWd)

Similarity Case  O(%d)  O(%d) Q% d)

Open questions:
@ Dependency on ¢

@ Extend to other hierarchical clustering
» Average linkage, centroid linkage

T Approximation ratio is (1+€)
¥ On average is a (1+ ¢&)-estimate
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