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Hierarchical Clustering

Data mining, statistics: build a hierarchy of clusters greedily

Agglomerative: bottom-up

Divisive: top-down

(a) Agglomerative (b) Divisive
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Hierarchical Clustering
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Application - Community Detection

(a) Community (b) Hierarchical tree

[For10]: Community detection in graphs
Citations: 13112
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Application - Biology

(a) Human tumor (b) Tumor: diff. linkages (c) DNA

[HTFF09]: Elements of statistical learning
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Application - Others

(a) Iris clusters (b) Software suite
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Single Linkage Clustering

Input: connected, weighted graph G = (V ,E ), distance

SLC: bottom-up hierarchical clustering
combine two closest clusters

Example: V = {a,b,c ,d ,e}

wj : j-th smallest weight on MST

Motivation:

costk captures important structure

SLC minimizes these costs

Naive solution: compute an MST in Õ(nd) time
Question: estimate cost(G ) and costk in sublinear time?
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Example: V = {a,b,c ,d ,e}

wj : j-th smallest weight on MST
costk : sum of the costs of spanning trees within k clusters

w1 = 1, w2 = 1, w3 = 2, w4 = 3

# of clusters = 5

cost5 = 0

Motivation:

costk captures important structure
SLC minimizes these costs

Naive solution: compute an MST in Õ(nd) time
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Input: connected, weighted graph G = (V ,E ), distance
SLC: bottom-up hierarchical clustering
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wj : j-th smallest weight on MST
costk : sum of the costs of spanning trees within k clusters

w1 = 1, w2 = 1, w3 = 2, w4 = 3
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cost4 = w1

= 1

Motivation:

costk captures important structure
SLC minimizes these costs

Naive solution: compute an MST in Õ(nd) time
Question: estimate cost(G ) and costk in sublinear time?

Pan Peng, Christian Sohler, Yi Xu SLC Costs in Sublinear Time 9 / 26



Single Linkage Clustering

Input: connected, weighted graph G = (V ,E ), distance
SLC: bottom-up hierarchical clustering
combine two closest clusters
Example: V = {a,b,c ,d ,e}

wj : j-th smallest weight on MST
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Main Results

W : max weight d : average degree query model: adj. list

cost(G )† costk Lower bound

Õ(
√
W

ε3
d)‡ Õ(

√
W

ε3
d) Ω(

√
W

ε2
d)

Succinct representation of the SLC estimates (ĉost1, . . . , ĉostn) s.t.
∀k, recover ĉostk in a short time, and on average a (1+ ε) estimate

On average: ∑
n
k=1 |ĉostk − costk | ≤ ε · cost(G) = ε ∑

n
k=1 costk

Short time: in O(log logW ) time

† (1+ ε)-estimate of cost(G)
‡ Applying [CRT05], one can get: (1+ ε)-estimate, Õ(W

ε2 d) queries
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Main Ideas

CC: Connected Component

Step 1

Reduction ⇒ estimating # of CCs

Step 2

Estimate # of CCs ⇒ sample & BFS

Step 3

Apply binary search to accelerate

Õ(
√
W

ε2
d) queries
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Step 1: Reduction

Definition

Gj : the subgraph containing edges with weight ≤ j

cj : # of CCs within Gj

nj : # of edges in the MST with weight = j

Observation

∑j>ℓ nj = cℓ−1

cost(G ) =
n−1

∑
i=1

(n− i) ·wi
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Step 1: Reduction

Definition

Gj : the subgraph containing edges with weight ≤ j

cj : # of CCs within Gj

nj : # of edges in the MST with weight = j

Observation

∑j>ℓ nj = cℓ−1

cost(G ) =
n−1

∑
i=1

(n− i) ·wi

=
n(n−1)

2
+

1

2
·
W−1

∑
j=1

(c2j − cj)
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Step 2: Estimate # of CCs

Input: graph G and subgraph H
Output: ĉ , estimated # of CCs in H

Algorithm: [CRT05]

1 Sample
2 BFS

▶ Recursively:
▶ Flip a coin
▶ Double # of

visited edges

Guarantee:
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Algorithm: [CRT05]

1 Sample
2 BFS

▶ Recursively:
▶ Flip a coin
▶ Double # of

visited edges

Guarantee: ours

|ĉ− c | ≤
ε ·max{ n√

W
,c}

Õ(
√
W

ε2
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Step 3: Binary Search

cost(G ) = n(n−1)
2 +∑

W−1
j=1

c2j −cj
2

Observation: c1, . . . ,cW ∈ [1,n] is non-increasing

cost(G )≈ n(n−1)
2 +∑

t−1
i=1{# of elements within i-th interval} · B

2
i −Bi

2

Challenge: estimated ĉ1, . . . , ĉW may not be non-increasing
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Step 3: Binary Search

For cj ∈ (Bi+1,Bi ], let |ĉj − cj |= ε ·max{ n√
W
,cj}.

We further need: ∀cj ∈ (Bi+1,Bi ], Bi −Bi+1 =Θ(|ĉj − cj |)

Too large: can’t estimate cj well;

Too small: ĉj will locate in an interval far away

Remark: t = O(logW /ε)
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Estimate cost(G )

ĉost(G ) = n(n−1)
2 +∑

t−1
i=1{# of elements within i-th interval} · B

2
i −Bi

2

Complexity

t = O(logW /ε) ⇒ Õ(t ·
√
W

ε2
d) = Õ(

√
W

ε3
d) queries

Correctness

∀cj ∈ (Bi+1,Bi ], Bi −Bi+1 =Θ(|ĉj − cj |)
⇒ ĉost(G ) achieves (1+ ε) approximation ratio
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⇒ ĉost(G ) achieves (1+ ε) approximation ratio
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Estimating the Profile

Profile vector: (cost1,cost2, . . . ,costn)

Main idea:

1 Pre-process in Õ(
√
W

ε3
d) time

2 ProfileOracle(k): return ĉostk in O(log t) = O(log logW ) time

3 ∑
n
k=1 |ĉostk − costk |= εcost(G ) = ε ∑

n
k=1 costk
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SLC in the Similarity Case

Input: weight represents similarity between two nodes

SLC: combine two most similar clusters

wj : j-th largest weight on MaxST
costk : sum of the costs of spanning trees within k clusters
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SLC in the Similarity Case

Input: weight represents similarity between two nodes

SLC: combine two most similar clusters

wj : j-th largest weight on MaxST
costk : sum of the costs of spanning trees within k clusters

w1 = 5, w2 = 4, w3 = 3, w4 = 2

cost(MaxST) = w1+w2+w3+w4

= 14

Pan Peng, Christian Sohler, Yi Xu SLC Costs in Sublinear Time 21 / 26



SLC in the Similarity Case

Input: weight represents similarity between two nodes

SLC: combine two most similar clusters

wj : j-th largest weight on MaxST
costk : sum of the costs of spanning trees within k clusters

w1 = 5, w2 = 4, w3 = 3, w4 = 2

# of clusters = 5

cost5 = 0
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SLC in the Similarity Case

Input: weight represents similarity between two nodes

SLC: combine two most similar clusters

wj : j-th largest weight on MaxST
costk : sum of the costs of spanning trees within k clusters

w1 = 5, w2 = 4, w3 = 3, w4 = 2

# of clusters = 4

cost4 = w1

= 5
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SLC in the Similarity Case

Input: weight represents similarity between two nodes

SLC: combine two most similar clusters

wj : j-th largest weight on MaxST
costk : sum of the costs of spanning trees within k clusters

w1 = 5, w2 = 4, w3 = 3, w4 = 2

# of clusters = 3

cost3 = w1+w2

= 9
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Results in the Similarity Case

cost(G ) costk Lower bound

Õ(W
ε3
d) Õ(W

ε3
d) Ω(W

ε2
d)

Main idea:

1 Gj : subgraph with weights ≥ j cj : # of CCs in Gj

2 Reduction: cost(G ) = ∑
W
j=1

(cj+n−1)(n−cj )
2 .

Remark:

W appears in every k-cluster

need new algorithm on n− cj
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Õ(W
ε3
d) Õ(W
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Experiments

r : sample size for each estimate of # CC; ĉostk : estimated value for cosk .

(a) Approx. ratio (b) Distance profiles (c) Similarity profiles

(d) Distance with r = 100
(e) On one dataset

with various r (f) Similarity with r = 100
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Recall: Our Results

Summary
W : max weight d : average degree query model: adj. list

Setting cost(G )† cost‡k Lower bound

Distance Case Õ(
√
W

ε3
d) Õ(

√
W

ε3
d) Ω(

√
W

ε2
d)

Similarity Case Õ(W
ε3
d) Õ(W

ε3
d) Ω(W

ε2
d)

Open questions:

Dependency on ε

Extend to other hierarchical clustering
▶ Average linkage, centroid linkage

† Approximation ratio is (1+ ε)
‡ On average is a (1+ ε)-estimate
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