

Sublinear Algorithms for Estimating Single-Linkage Clustering Costs

Pan Peng

University of Science &
Technology of China

Christian Sohler

University of Cologne
Cologne, Germany

Yi Xu

University of Science &
Technology of China

Outline

- 1 Background
- 2 Results
- 3 Proof Sketch
- 4 Extension to Similarity Case
- 5 Experiments
- 6 Conclusion

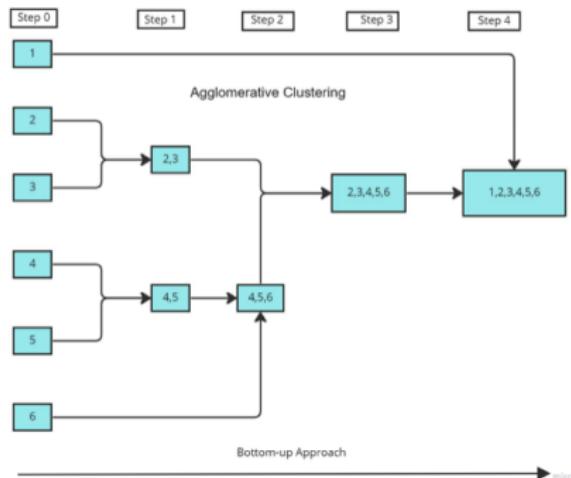
Outline

- 1 Background
- 2 Results
- 3 Proof Sketch
- 4 Extension to Similarity Case
- 5 Experiments
- 6 Conclusion

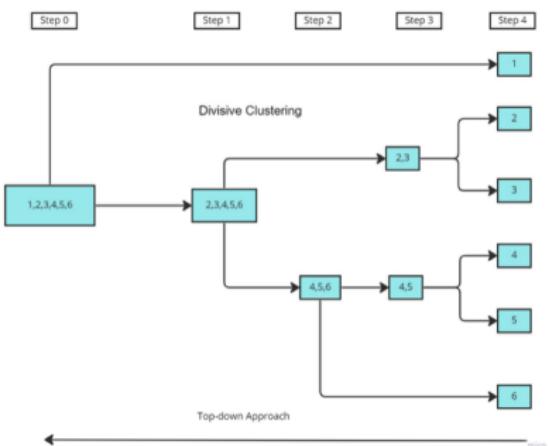
Hierarchical Clustering

Data mining, statistics: build a **hierarchy** of clusters **greedily**

- **Agglomerative:** bottom-up
- **Divisive:** top-down



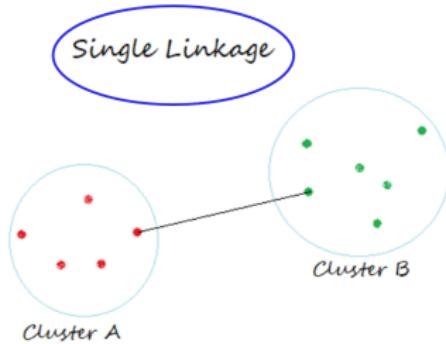
(a) Agglomerative



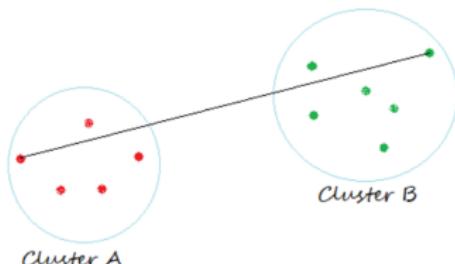
(b) Divisive

Hierarchical Clustering

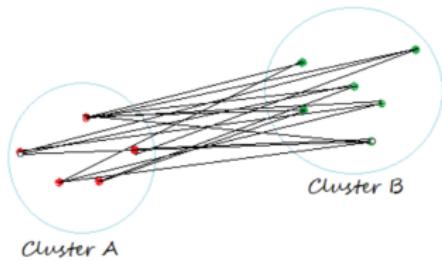
Single Linkage



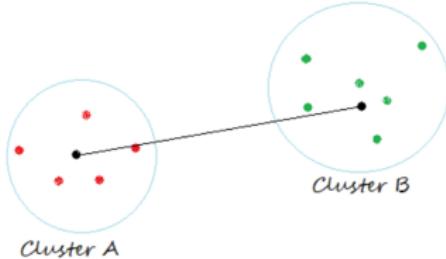
Complete Linkage



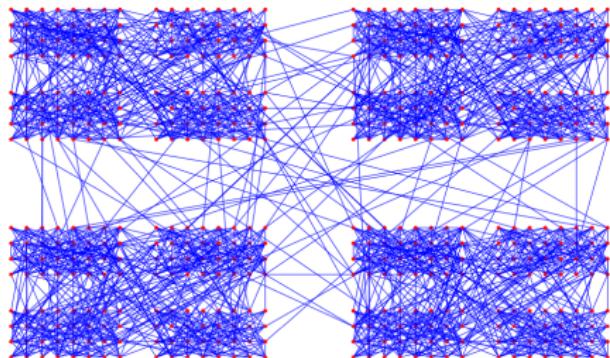
Average Linkage



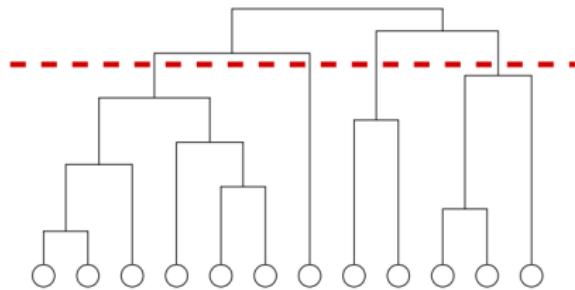
Centroid Linkage



Application - Community Detection



(a) Community

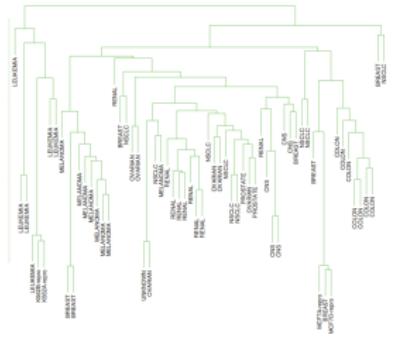


(b) Hierarchical tree

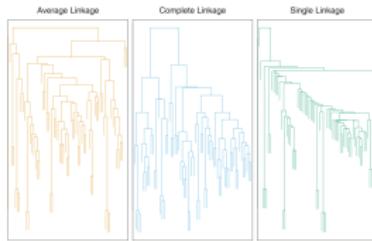
[For10]: Community detection in graphs

Citations: 13112

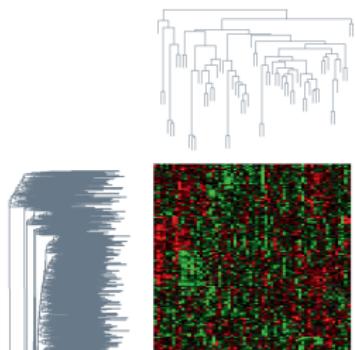
Application - Biology



(a) Human tumor



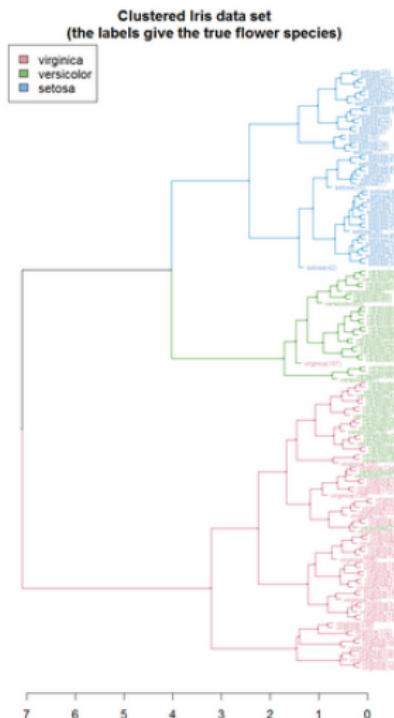
(b) Tumor: diff. linkages



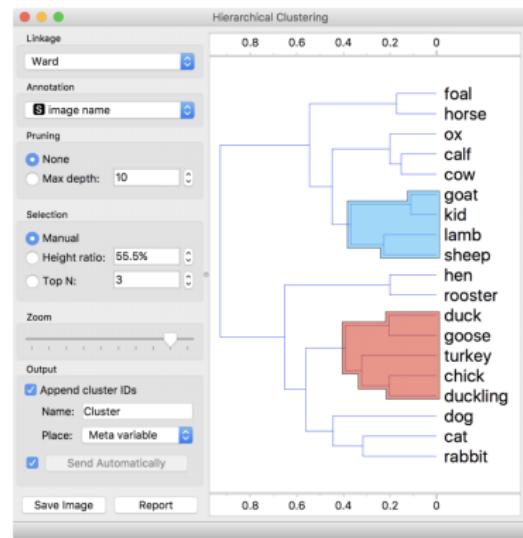
(c) DNA

[HTFF09]: Elements of statistical learning

Application - Others



(a) Iris clusters



(b) Software suite

Single Linkage Clustering

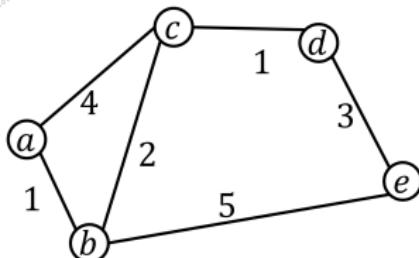
- **Input:** connected, weighted graph $G = (V, E)$, **distance**
- **SLC:** bottom-up hierarchical clustering
combine two **closest** clusters

Single Linkage Clustering

- Input: connected, weighted graph $G = (V, E)$, **distance**
- SLC: bottom-up hierarchical clustering
combine two **closest** clusters
- Example: $V = \{a, b, c, d, e\}$

w_j : j -th **smallest** weight on MST

cost_k : **sum** of the costs of spanning trees within k clusters



$$w_1 = 1, w_2 = 1, w_3 = 2, w_4 = 3$$

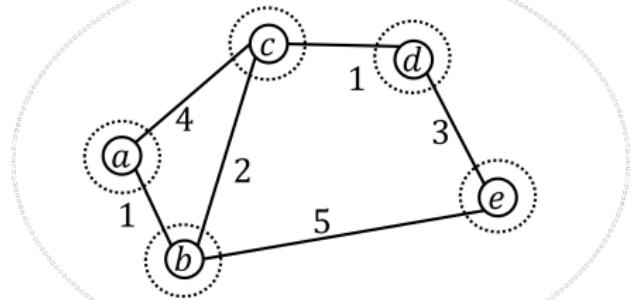
$$\begin{aligned}\text{cost}(\text{MST}) &= w_1 + w_2 + w_3 + w_4 \\ &= 7\end{aligned}$$

Single Linkage Clustering

- Input: connected, weighted graph $G = (V, E)$, **distance**
- SLC: bottom-up hierarchical clustering
combine two **closest** clusters
- Example: $V = \{a, b, c, d, e\}$

w_j : j -th **smallest** weight on MST

cost_k : **sum** of the costs of spanning trees within k clusters



$$w_1 = 1, w_2 = 1, w_3 = 2, w_4 = 3$$

$$\# \text{ of clusters} = 5$$

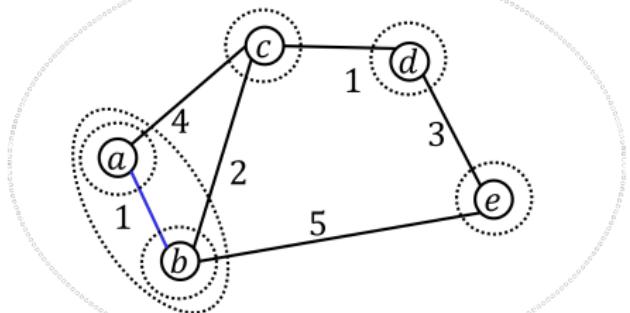
$$\text{cost}_5 = 0$$

Single Linkage Clustering

- Input: connected, weighted graph $G = (V, E)$, **distance**
- SLC: bottom-up hierarchical clustering
combine two **closest** clusters
- Example: $V = \{a, b, c, d, e\}$

w_j : j -th **smallest** weight on MST

cost_k : **sum** of the costs of spanning trees within k clusters



$$w_1 = 1, w_2 = 1, w_3 = 2, w_4 = 3$$

$$\# \text{ of clusters} = 4$$

$$\text{cost}_4 = w_1$$

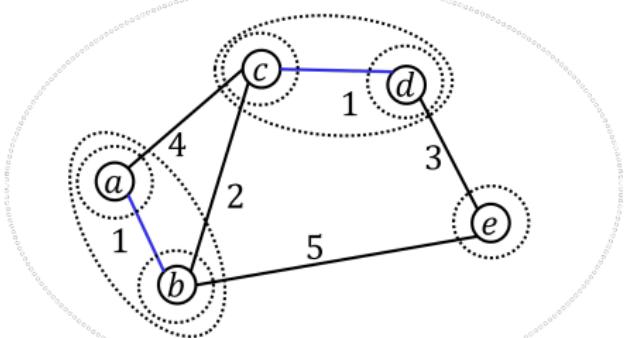
$$= 1$$

Single Linkage Clustering

- Input: connected, weighted graph $G = (V, E)$, **distance**
- SLC: bottom-up hierarchical clustering
combine two **closest** clusters
- Example: $V = \{a, b, c, d, e\}$

w_j : j -th **smallest** weight on MST

cost_k : **sum** of the costs of spanning trees within k clusters



$$w_1 = 1, w_2 = 1, w_3 = 2, w_4 = 3$$

$$\# \text{ of clusters} = 3$$

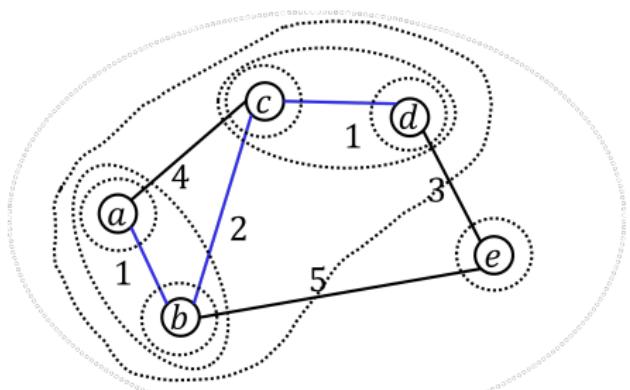
$$\begin{aligned}\text{cost}_3 &= w_1 + w_2 \\ &= 2\end{aligned}$$

Single Linkage Clustering

- Input: connected, weighted graph $G = (V, E)$, **distance**
- SLC: bottom-up hierarchical clustering
combine two **closest** clusters
- Example: $V = \{a, b, c, d, e\}$

w_j : j -th **smallest** weight on MST

cost_k : **sum** of the costs of spanning trees within k clusters



$$w_1 = 1, w_2 = 1, w_3 = 2, w_4 = 3$$

$$\# \text{ of clusters} = 2$$

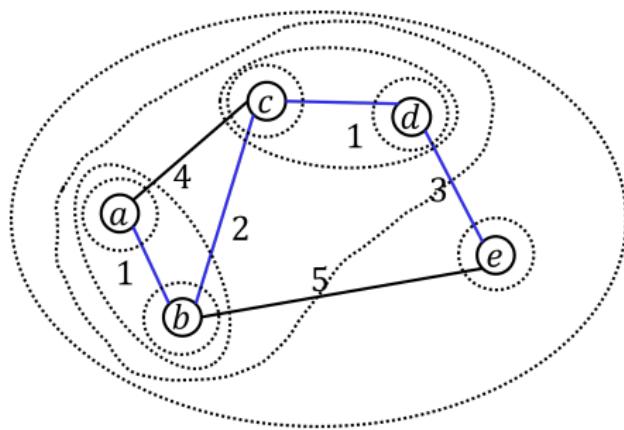
$$\begin{aligned} \text{cost}_2 &= w_1 + w_2 + w_3 \\ &= 4 \end{aligned}$$

Single Linkage Clustering

- Input: connected, weighted graph $G = (V, E)$, **distance**
- SLC: bottom-up hierarchical clustering
combine two **closest** clusters
- Example: $V = \{a, b, c, d, e\}$

w_j : j -th **smallest** weight on MST

cost_k : **sum** of the costs of spanning trees within k clusters



$$w_1 = 1, w_2 = 1, w_3 = 2, w_4 = 3$$

$$\# \text{ of clusters} = 1$$

$$\begin{aligned} \text{cost}_1 &= w_1 + w_2 + w_3 + w_4 \\ &= 7 \end{aligned}$$

Single Linkage Clustering

- **Input:** connected, weighted graph $G = (V, E)$, **distance**
- **SLC:** bottom-up hierarchical clustering
combine two **closest** clusters

w_j : j -th **smallest** weight on MST

cost_k : **sum** of the costs of spanning trees within k clusters

Single Linkage Clustering

- Input: connected, weighted graph $G = (V, E)$, **distance**
- **SLC**: bottom-up hierarchical clustering
combine two **closest** clusters

w_j : j -th **smallest** weight on MST

$\text{cost}_k = \sum_{j=1}^{n-k} w_j$, sum of the costs of spanning trees within k clusters

$\text{cost}(G) := \sum_{k=1}^n \text{cost}_k = \sum_{j=1}^n (n-j)w_j$, total clustering cost

Motivation:

- cost_k captures important **structure**
- SLC minimizes these costs

Single Linkage Clustering

- Input: connected, weighted graph $G = (V, E)$, **distance**
- **SLC**: bottom-up hierarchical clustering
combine two **closest** clusters

w_j : j -th **smallest** weight on MST

$\text{cost}_k = \sum_{j=1}^{n-k} w_j$, sum of the costs of spanning trees within k clusters

$\text{cost}(G) := \sum_{k=1}^n \text{cost}_k = \sum_{j=1}^n (n-j)w_j$, total clustering cost

Motivation:

- cost_k captures important **structure**
- SLC minimizes these costs

Naive solution: compute an MST in $\tilde{O}(nd)$ time

Question: estimate $\text{cost}(G)$ and cost_k in **sublinear** time?

Outline

1 Background

2 Results

3 Proof Sketch

4 Extension to Similarity Case

5 Experiments

6 Conclusion

Main Results

W : max weight d : average degree query model: adj. list

$\text{cost}(G)^\dagger$	cost_k	Lower bound
$\tilde{O}\left(\frac{\sqrt{W}}{\varepsilon^3} d\right)^\ddagger$	$\tilde{O}\left(\frac{\sqrt{W}}{\varepsilon^3} d\right)$	$\Omega\left(\frac{\sqrt{W}}{\varepsilon^2} d\right)$

† $(1 + \varepsilon)$ -estimate of $\text{cost}(G)$

‡ Applying [CRT05], one can get: $(1 + \varepsilon)$ -estimate, $\tilde{O}\left(\frac{W}{\varepsilon^2} d\right)$ queries

Main Results

W : max weight d : average degree query model: adj. list

$\text{cost}(G)^\dagger$	cost_k	Lower bound
$\tilde{O}\left(\frac{\sqrt{W}}{\varepsilon^3} d\right)^\ddagger$	$\tilde{O}\left(\frac{\sqrt{W}}{\varepsilon^3} d\right)$	$\Omega\left(\frac{\sqrt{W}}{\varepsilon^2} d\right)$

Succinct representation of the SLC estimates $(\widehat{\text{cost}}_1, \dots, \widehat{\text{cost}}_n)$ s.t.

$\forall k$, recover $\widehat{\text{cost}}_k$ in a **short** time, and **on average** a $(1 + \varepsilon)$ estimate

On average: $\sum_{k=1}^n |\widehat{\text{cost}}_k - \text{cost}_k| \leq \varepsilon \cdot \text{cost}(G) = \varepsilon \sum_{k=1}^n \text{cost}_k$

Short time: in $\tilde{O}(\log \log W)$ time

† $(1 + \varepsilon)$ -estimate of $\text{cost}(G)$

‡ Applying [CRT05], one can get: $(1 + \varepsilon)$ -estimate, $\tilde{O}\left(\frac{W}{\varepsilon^2} d\right)$ queries

Outline

1 Background

2 Results

3 Proof Sketch

4 Extension to Similarity Case

5 Experiments

6 Conclusion

CC: Connected Component

Step 1

Reduction \Rightarrow estimating # of CCs

Main Ideas

CC: **C**onnected **C**omponent

Step 1

Reduction \Rightarrow estimating # of **CCs**

Step 2

Estimate # of CCs \Rightarrow sample & BFS

Main Ideas

CC: Connected Component

Step 1

Reduction \Rightarrow estimating # of CCs

Step 2

Estimate # of CCs \Rightarrow sample & BFS

[CRT05]: $\tilde{O}(\frac{W}{\epsilon^2}d)$ queries

Main Ideas

CC: Connected Component

Step 1

Reduction \Rightarrow estimating # of CCs

Step 2

Estimate # of CCs \Rightarrow sample & BFS

Step 3

Apply binary search to accelerate

Main Ideas

CC: Connected Component

Step 1

Reduction \Rightarrow estimating # of CCs

Step 2

Estimate # of CCs \Rightarrow sample & BFS

Step 3

Apply binary search to accelerate

$\tilde{O}(\frac{\sqrt{W}}{\varepsilon^2} d)$ queries

Step 1: Reduction

Definition

- G_j : the subgraph containing edges with weight $\leq j$
- c_j : # of CCs within G_j
- n_j : # of edges in the MST with weight $= j$

Step 1: Reduction

Definition

- G_j : the subgraph containing edges with weight $\leq j$
- c_j : # of CCs within G_j
- n_j : # of edges in the MST with weight $= j$

$$\text{cost}(G) = \sum_{i=1}^{n-1} (n - i) \cdot w_i$$

Step 1: Reduction

Definition

- G_j : the subgraph containing edges with weight $\leq j$
- c_j : # of CCs within G_j
- n_j : # of edges in the MST with weight $= j$

$$\begin{aligned}\text{cost}(G) &= \sum_{i=1}^{n-1} (n-i) \cdot w_i \\ &= \sum_{i=1}^{n_1} (n-i) \cdot 1 + \sum_{i=n_1+1}^{n_1+n_2} (n-i) \cdot 2 + \dots\end{aligned}$$

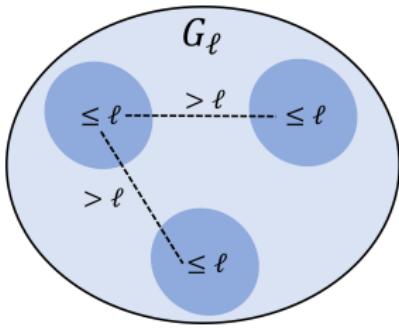
Step 1: Reduction

Definition

- G_j : the subgraph containing edges with weight $\leq j$
- c_j : # of CCs within G_j
- n_j : # of edges in the MST with weight $= j$

Observation

$$\sum_{j > \ell} n_j = c_\ell - 1$$



$$\begin{aligned}\text{cost}(G) &= \sum_{i=1}^{n-1} (n-i) \cdot w_i \\ &= \sum_{i=1}^{n_1} (n-i) \cdot 1 + \sum_{i=n_1+1}^{n_1+n_2} (n-i) \cdot 2 + \dots\end{aligned}$$

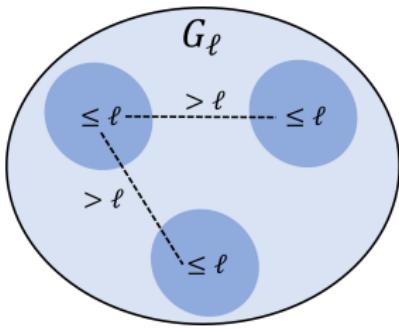
Step 1: Reduction

Definition

- G_j : the subgraph containing edges with weight $\leq j$
- c_j : # of CCs within G_j
- n_j : # of edges in the MST with weight $= j$

Observation

$$\sum_{j > \ell} n_j = c_\ell - 1$$



$$\begin{aligned}\text{cost}(G) &= \sum_{i=1}^{n-1} (n-i) \cdot w_i \\ &= \sum_{i=1}^{n_1} (n-i) \cdot 1 + \sum_{i=n_1+1}^{n_1+n_2} (n-i) \cdot 2 + \dots \\ &= \sum_{i=1}^{n-c_1} (n-i) \cdot 1 + \dots\end{aligned}$$

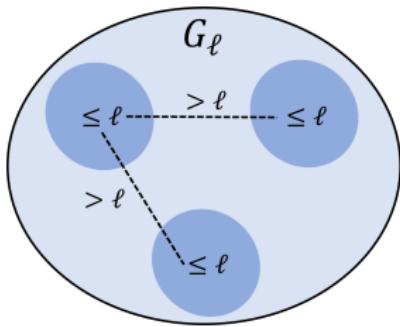
Step 1: Reduction

Definition

- G_j : the subgraph containing edges with weight $\leq j$
- c_j : # of CCs within G_j
- n_j : # of edges in the MST with weight $= j$

Observation

$$\sum_{j > \ell} n_j = c_\ell - 1$$



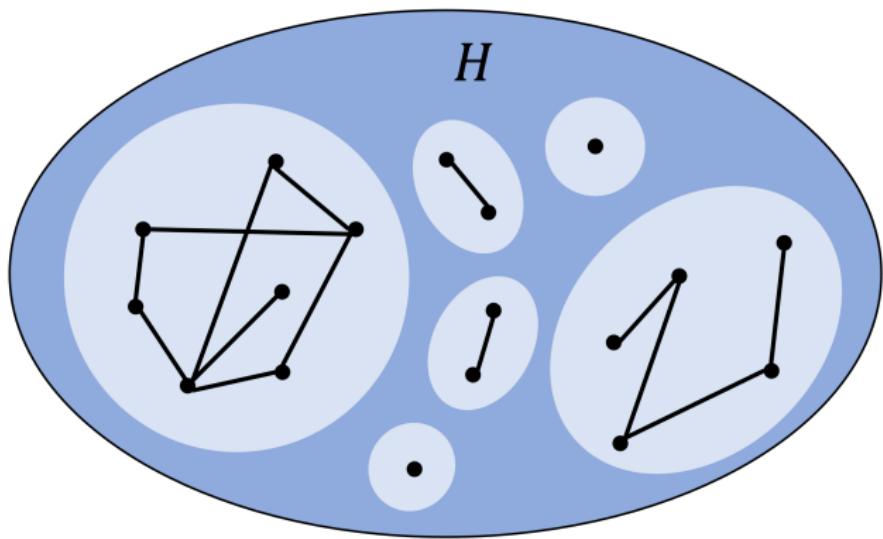
$$\begin{aligned}\text{cost}(G) &= \sum_{i=1}^{n-1} (n-i) \cdot w_i \\ &= \frac{n(n-1)}{2} + \frac{1}{2} \cdot \sum_{j=1}^{W-1} (c_j^2 - c_j)\end{aligned}$$

Step 2: Estimate # of CCs

Input: graph G and subgraph H

Output: \hat{c} , estimated # of CCs in H

Algorithm: [CRT05]



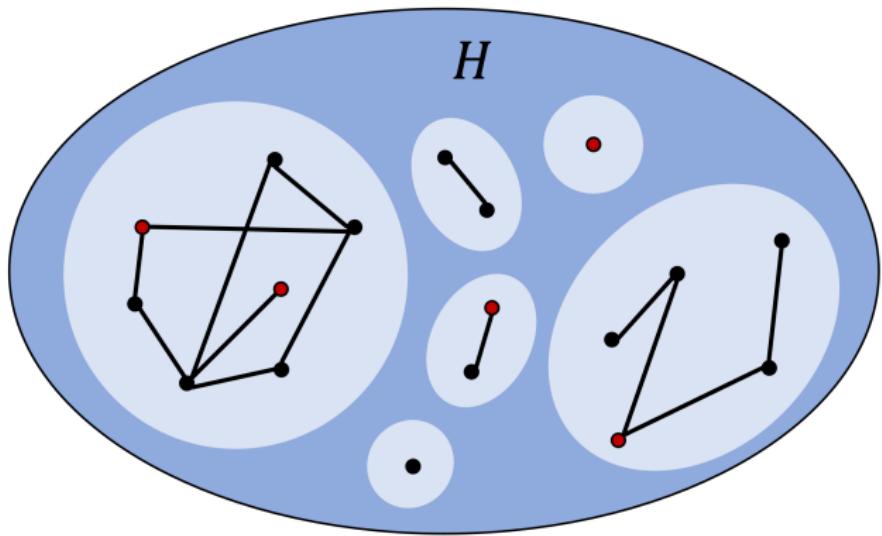
Step 2: Estimate # of CCs

Input: graph G and subgraph H

Output: \hat{c} , estimated # of CCs in H

Algorithm: [CRT05]

① Sample



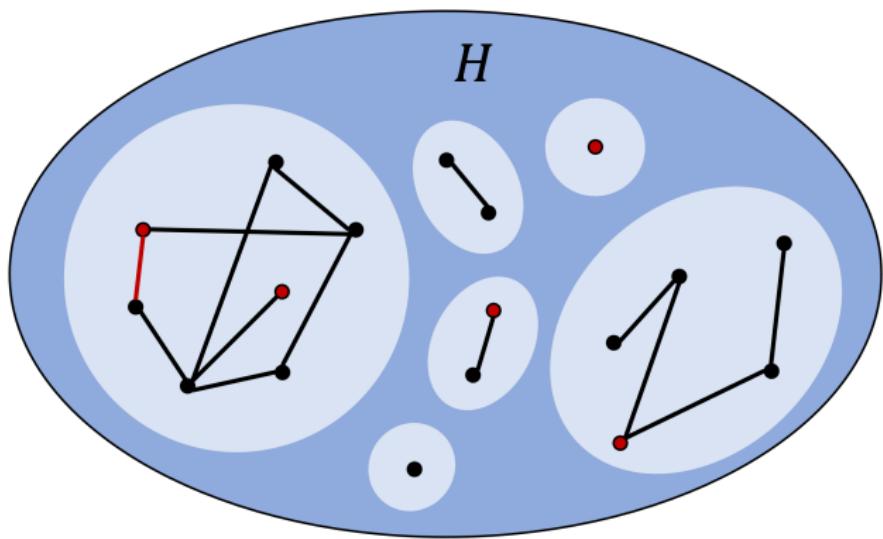
Step 2: Estimate # of CCs

Input: graph G and subgraph H

Output: \hat{c} , estimated # of CCs in H

Algorithm: [CRT05]

- ① Sample
- ② BFS



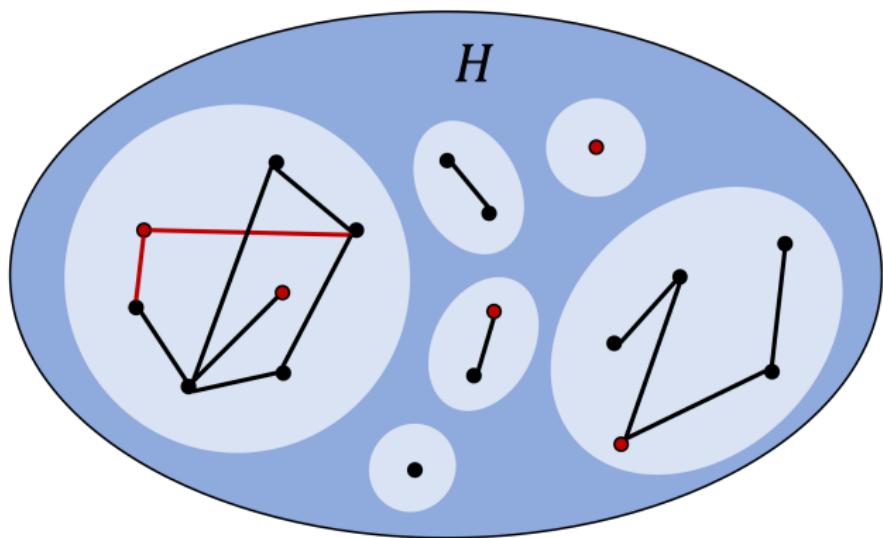
Step 2: Estimate # of CCs

Input: graph G and subgraph H

Output: \hat{c} , estimated # of CCs in H

Algorithm: [CRT05]

- ➊ Sample
- ➋ BFS
 - ▶ Recursively:
 - ▶ Flip a coin
 - ▶ Double # of visited edges



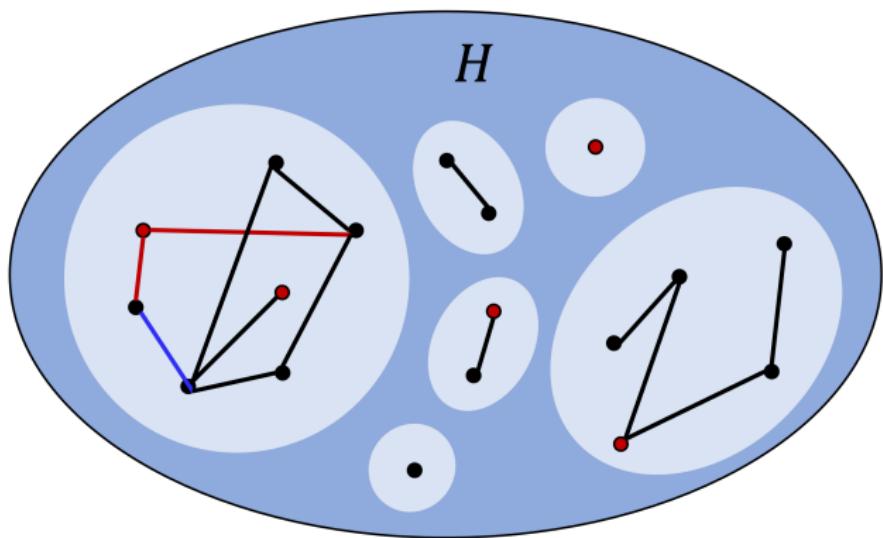
Step 2: Estimate # of CCs

Input: graph G and subgraph H

Output: \hat{c} , estimated # of CCs in H

Algorithm: [CRT05]

- ① Sample
- ② BFS
 - ▶ Recursively:
 - ▶ Flip a coin
 - ▶ Double # of visited edges



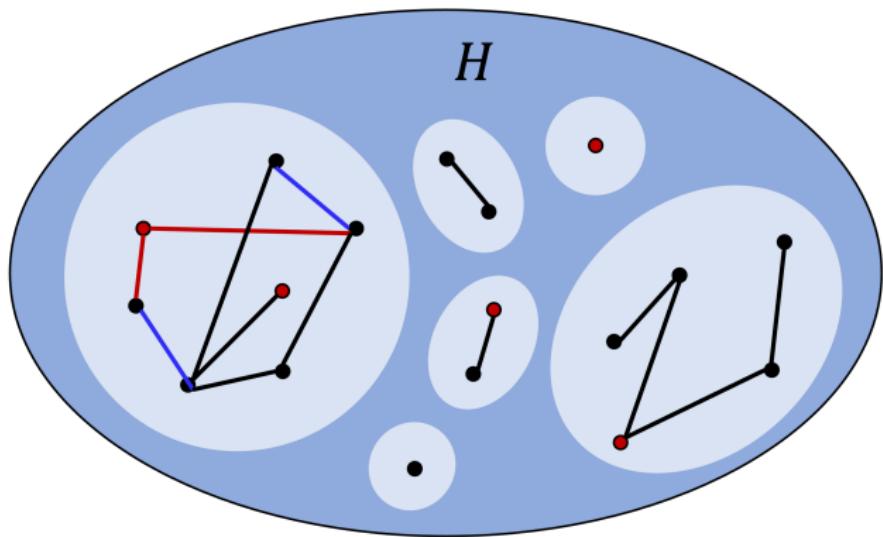
Step 2: Estimate # of CCs

Input: graph G and subgraph H

Output: \hat{c} , estimated # of CCs in H

Algorithm: [CRT05]

- 1 Sample
- 2 BFS
 - ▶ Recursively:
 - ▶ Flip a coin
 - ▶ Double # of visited edges



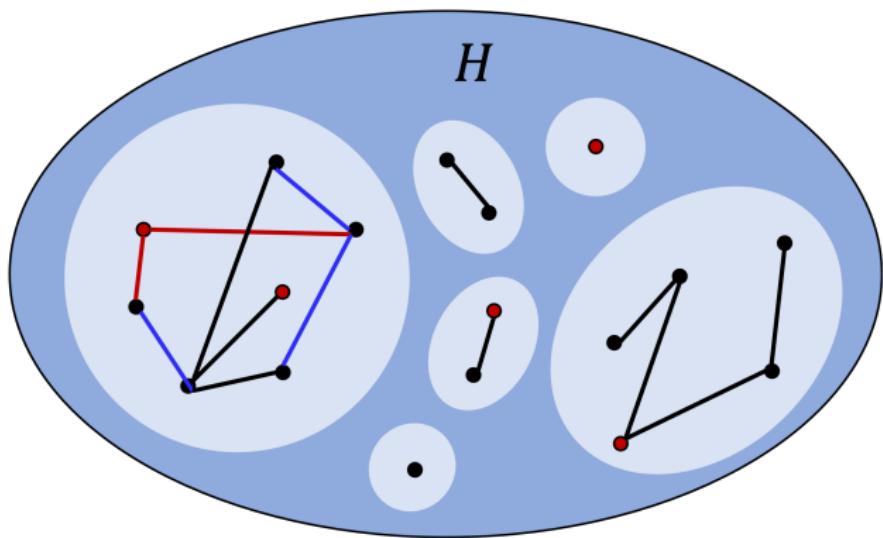
Step 2: Estimate # of CCs

Input: graph G and subgraph H

Output: \hat{c} , estimated # of CCs in H

Algorithm: [CRT05]

- ➊ Sample
- ➋ BFS
 - ▶ Recursively:
 - ▶ Flip a coin
 - ▶ Double # of visited edges



Step 2: Estimate # of CCs

Input: graph G and subgraph H

Output: \hat{c} , estimated # of CCs in H

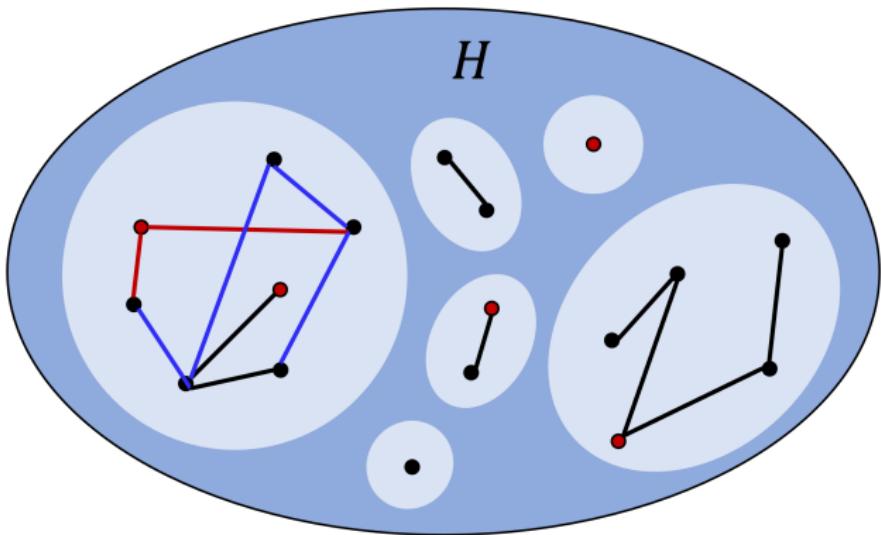
Algorithm: [CRT05]

- ① Sample
- ② BFS

- ▶ Recursively:
- ▶ Flip a coin
- ▶ Double # of visited edges

Guarantee: [CRT05]

- $|\hat{c} - c| \leq \varepsilon n$
- $\tilde{O}\left(\frac{d}{\varepsilon^2}\right)$



Step 2: Estimate # of CCs

Input: graph G and subgraph H

Output: \hat{c} , estimated # of CCs in H

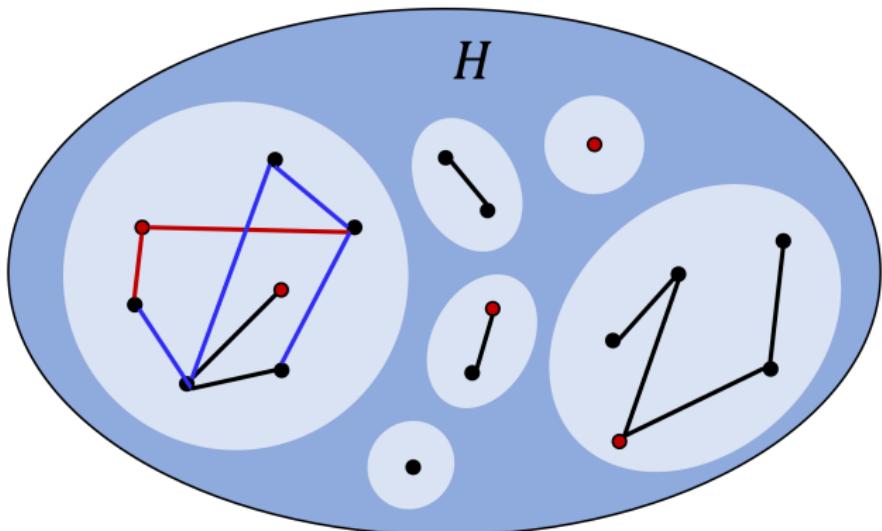
Algorithm: [CRT05]

- 1 Sample
- 2 BFS

- ▶ Recursively:
- ▶ Flip a coin
- ▶ Double # of visited edges

Guarantee: **ours**

- $|\hat{c} - c| \leq \varepsilon \cdot \max\left\{\frac{n}{\sqrt{W}}, c\right\}$
- $\tilde{O}\left(\frac{\sqrt{W}}{\varepsilon^2} d\right)$ queries



Step 3: Binary Search

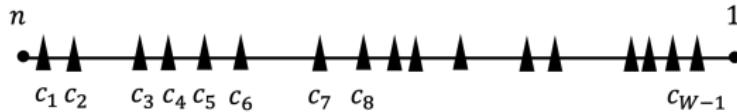
$$\text{cost}(G) = \frac{n(n-1)}{2} + \sum_{j=1}^{W-1} \frac{c_j^2 - c_j}{2}$$

- Observation: $c_1, \dots, c_W \in [1, n]$ is **non-increasing**

Step 3: Binary Search

$$\text{cost}(G) = \frac{n(n-1)}{2} + \sum_{j=1}^{W-1} \frac{c_j^2 - c_j}{2}$$

- Observation: $c_1, \dots, c_W \in [1, n]$ is **non-increasing**

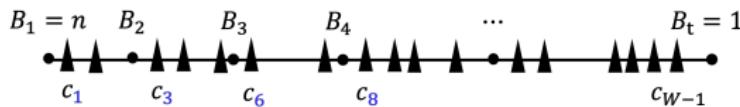


Step 3: Binary Search

$$\text{cost}(G) = \frac{n(n-1)}{2} + \sum_{j=1}^{W-1} \frac{c_j^2 - c_j}{2}$$

- Observation: $c_1, \dots, c_W \in [1, n]$ is **non-increasing**
- Idea:

Divide $[1, n]$ into intervals $1 = B_t < \dots < B_1 = n$



Step 3: Binary Search

$$\text{cost}(G) = \frac{n(n-1)}{2} + \sum_{j=1}^{W-1} \frac{c_j^2 - c_j}{2}$$

- Observation: $c_1, \dots, c_W \in [1, n]$ is **non-increasing**
- Idea:

Divide $[1, n]$ into intervals $1 = B_t < \dots < B_1 = n$



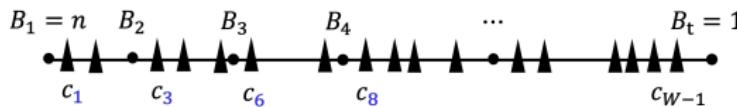
$$\text{cost}(G) \approx \frac{n(n-1)}{2} + \sum_{i=1}^{t-1} \{ \# \text{ of elements within } i\text{-th interval} \} \cdot \frac{B_i^2 - B_i}{2}$$

Step 3: Binary Search

$$\text{cost}(G) = \frac{n(n-1)}{2} + \sum_{j=1}^{W-1} \frac{c_j^2 - c_j}{2}$$

- Observation: $c_1, \dots, c_W \in [1, n]$ is **non-increasing**
- Idea:

Divide $[1, n]$ into intervals $1 = B_t < \dots < B_1 = n$
Map each c_j to its **nearest** interval endpoint



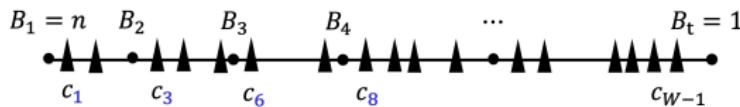
$$\text{cost}(G) \approx \frac{n(n-1)}{2} + \sum_{i=1}^{t-1} \{ \# \text{ of elements within } i\text{-th interval} \} \cdot \frac{B_i^2 - B_i}{2}$$

Step 3: Binary Search

$$\text{cost}(G) = \frac{n(n-1)}{2} + \sum_{j=1}^{W-1} \frac{c_j^2 - c_j}{2}$$

- Observation: $c_1, \dots, c_W \in [1, n]$ is **non-increasing**
- Idea:

Divide $[1, n]$ into intervals $1 = B_t < \dots < B_1 = n$
Map each c_j to its **nearest** interval endpoint



$$\text{cost}(G) \approx \frac{n(n-1)}{2} + \sum_{i=1}^{t-1} \{ \# \text{ of elements within } i\text{-th interval} \} \cdot \frac{B_i^2 - B_i}{2}$$

Challenge: estimated $\hat{c}_1, \dots, \hat{c}_W$ may **not** be non-increasing

Step 3: Binary Search

For $c_j \in (B_{i+1}, B_i]$, let $|\hat{c}_j - c_j| = \varepsilon \cdot \max\left\{\frac{n}{\sqrt{W}}, c_j\right\}$.

We further need: $\forall c_j \in (B_{i+1}, B_i], B_i - B_{i+1} = \Theta(|\hat{c}_j - c_j|)$

Step 3: Binary Search

For $c_j \in (B_{i+1}, B_i]$, let $|\hat{c}_j - c_j| = \varepsilon \cdot \max\left\{\frac{n}{\sqrt{W}}, c_j\right\}$.

We further need: $\forall c_j \in (B_{i+1}, B_i], B_i - B_{i+1} = \Theta(|\hat{c}_j - c_j|)$

- Too **large**: can't estimate c_j well;
- Too **small**: \hat{c}_j will locate in an interval far away

Step 3: Binary Search

For $c_j \in (B_{i+1}, B_i]$, let $|\hat{c}_j - c_j| = \epsilon \cdot \max\left\{\frac{n}{\sqrt{W}}, c_j\right\}$.

We further need: $\forall c_j \in (B_{i+1}, B_i], B_i - B_{i+1} = \Theta(|\hat{c}_j - c_j|)$

- Too **large**: can't estimate c_j well;
- Too **small**: \hat{c}_j will locate in an interval far away

$$B_1 = n \quad B_i \approx \frac{n}{(1 + \epsilon)^i} \quad \frac{n}{\sqrt{W}} \quad B_i \approx \frac{n}{\sqrt{W}}(1 - i \cdot \epsilon) \quad B_t = 1$$
$$B_1 - B_{i+1} = \epsilon B_{i+1} = \Theta(\epsilon c_j) = \Theta(|\hat{c}_j - c_j|)$$
$$B_i - B_{i+1} = \epsilon \frac{n}{\sqrt{W}} = \Theta(|\hat{c}_j - c_j|)$$

Step 3: Binary Search

For $c_j \in (B_{i+1}, B_i]$, let $|\hat{c}_j - c_j| = \varepsilon \cdot \max\left\{\frac{n}{\sqrt{W}}, c_j\right\}$.

We further need: $\forall c_j \in (B_{i+1}, B_i], B_i - B_{i+1} = \Theta(|\hat{c}_j - c_j|)$

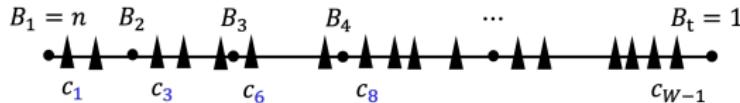
- Too **large**: can't estimate c_j well;
- Too **small**: \hat{c}_j will locate in an interval far away

$$B_1 = n \quad B_i \approx \frac{n}{(1 + \varepsilon)^i} \quad \frac{n}{\sqrt{W}} \quad B_i \approx \frac{n}{\sqrt{W}}(1 - i \cdot \varepsilon) \quad B_t = 1$$
$$B_1 - B_{i+1} = \varepsilon B_{i+1} = \Theta(\varepsilon c_j) = \Theta(|\hat{c}_j - c_j|)$$
$$B_i - B_{i+1} = \varepsilon \frac{n}{\sqrt{W}} = \Theta(|\hat{c}_j - c_j|)$$

Remark: $t = O(\log W / \varepsilon)$

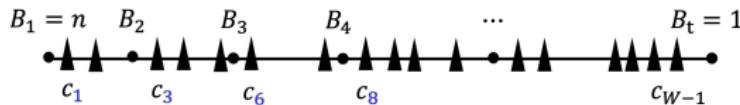
Estimate $\text{cost}(G)$

$$\widehat{\text{cost}}(G) = \frac{n(n-1)}{2} + \sum_{i=1}^{t-1} \{\# \text{ of elements within } i\text{-th interval}\} \cdot \frac{B_i^2 - B_i}{2}$$



Estimate $\text{cost}(G)$

$$\widehat{\text{cost}}(G) = \frac{n(n-1)}{2} + \sum_{i=1}^{t-1} \{\# \text{ of elements within } i\text{-th interval}\} \cdot \frac{B_i^2 - B_i}{2}$$

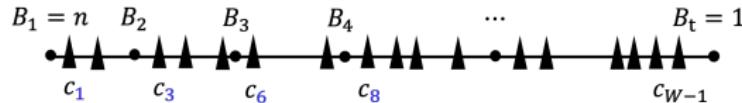


Complexity

$$t = O(\log W/\varepsilon)$$

Estimate $\text{cost}(G)$

$$\widehat{\text{cost}}(G) = \frac{n(n-1)}{2} + \sum_{i=1}^{t-1} \{\# \text{ of elements within } i\text{-th interval}\} \cdot \frac{B_i^2 - B_i}{2}$$

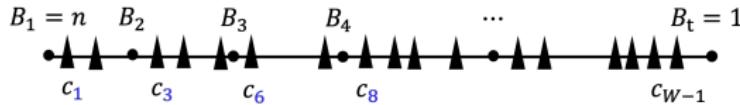


Complexity

$$t = O(\log W/\varepsilon) \Rightarrow \tilde{O}(\frac{\sqrt{W}}{\varepsilon^2} d) = \tilde{O}(\frac{\sqrt{W}}{\varepsilon^3} d) \text{ queries}$$

Estimate $\text{cost}(G)$

$$\widehat{\text{cost}}(G) = \frac{n(n-1)}{2} + \sum_{i=1}^{t-1} \{\# \text{ of elements within } i\text{-th interval}\} \cdot \frac{B_i^2 - B_i}{2}$$



Complexity

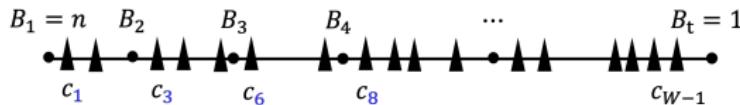
$$t = O(\log W/\varepsilon) \Rightarrow \tilde{O}(t \cdot \frac{\sqrt{W}}{\varepsilon^2} d) = \tilde{O}(\frac{\sqrt{W}}{\varepsilon^3} d) \text{ queries}$$

Correctness

$$\forall c_j \in (B_{i+1}, B_i], \ B_i - B_{i+1} = \Theta(|\hat{c}_j - c_j|)$$

Estimate $\widehat{\text{cost}}(G)$

$$\widehat{\text{cost}}(G) = \frac{n(n-1)}{2} + \sum_{i=1}^{t-1} \{\# \text{ of elements within } i\text{-th interval}\} \cdot \frac{B_i^2 - B_i}{2}$$



Complexity

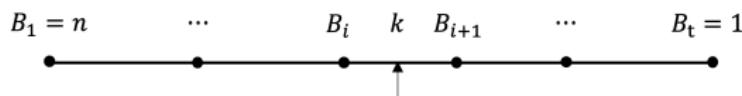
$$t = O(\log W/\varepsilon) \Rightarrow \tilde{O}(\frac{\sqrt{W}}{\varepsilon^2} d) = \tilde{O}(\frac{\sqrt{W}}{\varepsilon^3} d) \text{ queries}$$

Correctness

$\forall c_j \in (B_{i+1}, B_i]$, $B_i - B_{i+1} = \Theta(|\hat{c}_j - c_j|)$
 $\Rightarrow \widehat{\text{cost}}(G)$ achieves $(1 + \varepsilon)$ approximation ratio

Estimating the Profile

Profile vector: $(\text{cost}_1, \text{cost}_2, \dots, \text{cost}_n)$



Estimating the Profile

Profile vector: $(\text{cost}_1, \text{cost}_2, \dots, \text{cost}_n)$



Main idea:

- ① Pre-process in $\tilde{O}(\frac{\sqrt{W}}{\varepsilon^3} d)$ time
- ② PROFILEORACLE(k): return $\widehat{\text{cost}}_k$ in $O(\log t) = O(\log \log W)$ time
- ③ $\sum_{k=1}^n |\widehat{\text{cost}}_k - \text{cost}_k| = \varepsilon \text{cost}(G) = \varepsilon \sum_{k=1}^n \text{cost}_k$

Outline

- 1 Background
- 2 Results
- 3 Proof Sketch
- 4 Extension to Similarity Case
- 5 Experiments
- 6 Conclusion

SLC in the Similarity Case

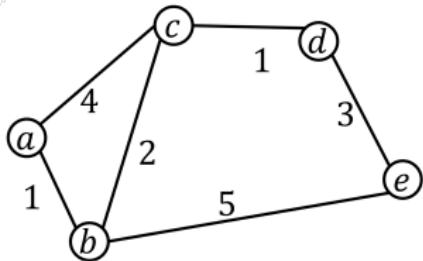
- Input: weight represents **similarity** between two nodes
- SLC: combine two **most similar** clusters

SLC in the Similarity Case

- Input: weight represents **similarity** between two nodes
- SLC: combine two **most similar** clusters

w_j : j -th **largest** weight on MaxST

cost_k : **sum** of the costs of spanning trees within k clusters



$$w_1 = 5, w_2 = 4, w_3 = 3, w_4 = 2$$

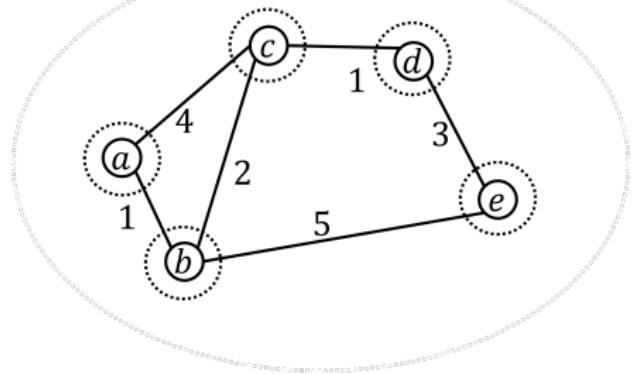
$$\begin{aligned}\text{cost}(\text{MaxST}) &= w_1 + w_2 + w_3 + w_4 \\ &= 14\end{aligned}$$

SLC in the Similarity Case

- Input: weight represents **similarity** between two nodes
- SLC: combine two **most similar** clusters

w_j : j -th **largest** weight on MaxST

cost_k : **sum** of the costs of spanning trees within k clusters



$$w_1 = 5, w_2 = 4, w_3 = 3, w_4 = 2$$

$$\# \text{ of clusters} = 2$$

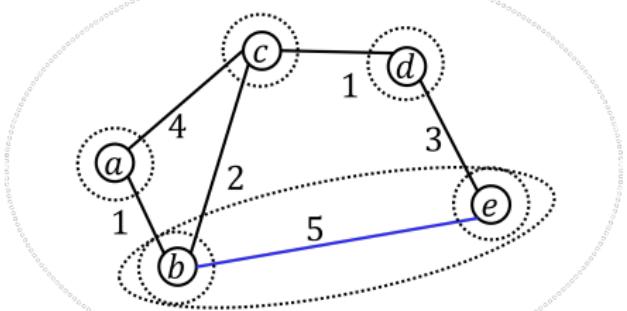
$$\text{cost}_2 = 0$$

SLC in the Similarity Case

- Input: weight represents **similarity** between two nodes
- SLC: combine two **most similar** clusters

w_j : j -th **largest** weight on MaxST

cost_k : **sum** of the costs of spanning trees within k clusters



$$w_1 = 5, w_2 = 4, w_3 = 3, w_4 = 2$$

$$\# \text{ of clusters} = 4$$

$$\text{cost}_4 = w_1$$

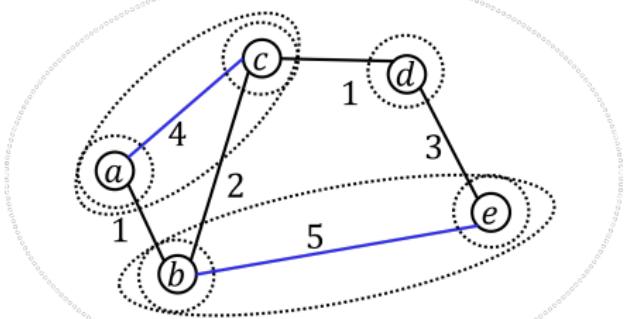
$$= 5$$

SLC in the Similarity Case

- Input: weight represents **similarity** between two nodes
- SLC: combine two **most similar** clusters

w_j : j -th **largest** weight on MaxST

cost_k : **sum** of the costs of spanning trees within k clusters



$$w_1 = 5, w_2 = 4, w_3 = 3, w_4 = 2$$

$$\# \text{ of clusters} = 3$$

$$\text{cost}_3 = w_1 + w_2$$

$$= 9$$

Results in the Similarity Case

$\text{cost}(G)$	cost_k	Lower bound
$\tilde{O}(\frac{W}{\varepsilon^3}d)$	$\tilde{O}(\frac{W}{\varepsilon^3}d)$	$\Omega(\frac{W}{\varepsilon^2}d)$

Results in the Similarity Case

$\text{cost}(G)$	cost_k	Lower bound
$\tilde{O}(\frac{W}{\varepsilon^3}d)$	$\tilde{O}(\frac{W}{\varepsilon^3}d)$	$\Omega(\frac{W}{\varepsilon^2}d)$

Main idea:

- ① G_j : subgraph with weights $\geq j$ c_j : # of CCs in G_j

Results in the Similarity Case

$\text{cost}(G)$	cost_k	Lower bound
$\tilde{O}(\frac{W}{\varepsilon^3}d)$	$\tilde{O}(\frac{W}{\varepsilon^3}d)$	$\Omega(\frac{W}{\varepsilon^2}d)$

Main idea:

- ① G_j : subgraph with weights $\geq j$ c_j : # of CCs in G_j
- ② Reduction: $\text{cost}(G) = \sum_{j=1}^W \frac{(c_j+n-1)(n-c_j)}{2}$.

Results in the Similarity Case

$\text{cost}(G)$	cost_k	Lower bound
$\tilde{O}(\frac{W}{\varepsilon^3}d)$	$\tilde{O}(\frac{W}{\varepsilon^3}d)$	$\Omega(\frac{W}{\varepsilon^2}d)$

Main idea:

- ① G_j : subgraph with weights $\geq j$ c_j : # of CCs in G_j
- ② Reduction: $\text{cost}(G) = \sum_{j=1}^W \frac{(c_j+n-1)(n-c_j)}{2}$.

Remark:

- W appears in every k -cluster
- need **new** algorithm on $n - c_j$

Outline

1 Background

2 Results

3 Proof Sketch

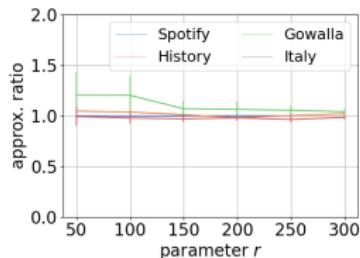
4 Extension to Similarity Case

5 Experiments

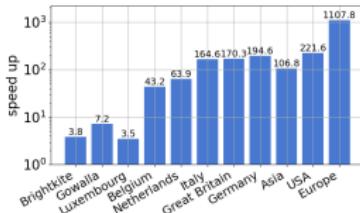
6 Conclusion

Experiments

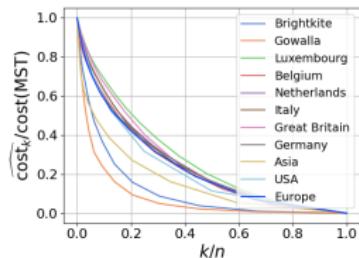
r : sample size for each estimate of $\# \text{ CC}$; $\widehat{\text{cost}}_k$: estimated value for cost_k .



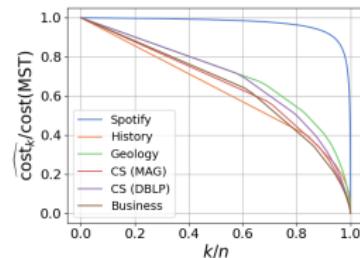
(a) Approx. ratio



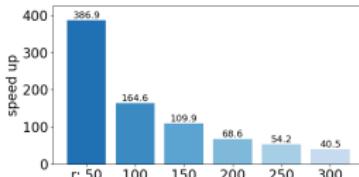
(d) Distance with $r = 100$



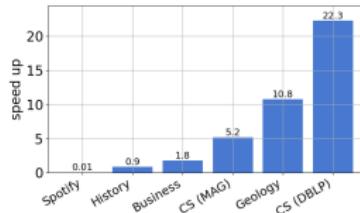
(b) Distance profiles



(c) Similarity profiles



(e) On one dataset
with various r



(f) Similarity with $r = 100$

Outline

- 1 Background
- 2 Results
- 3 Proof Sketch
- 4 Extension to Similarity Case
- 5 Experiments
- 6 Conclusion

Recall: Our Results

Summary

W : max weight d : average degree query model: adj. list

Setting	$\text{cost}(G)^\dagger$	cost_k^\ddagger	Lower bound
Distance Case	$\tilde{O}\left(\frac{\sqrt{W}}{\varepsilon^3} d\right)$	$\tilde{O}\left(\frac{\sqrt{W}}{\varepsilon^3} d\right)$	$\Omega\left(\frac{\sqrt{W}}{\varepsilon^2} d\right)$
Similarity Case	$\tilde{O}\left(\frac{W}{\varepsilon^3} d\right)$	$\tilde{O}\left(\frac{W}{\varepsilon^3} d\right)$	$\Omega\left(\frac{W}{\varepsilon^2} d\right)$

Open questions:

- Dependency on ε
- Extend to other hierarchical clustering
 - ▶ Average linkage, centroid linkage

† Approximation ratio is $(1 + \varepsilon)$

‡ On average is a $(1 + \varepsilon)$ -estimate