

Sublinear Algorithms for Estimating Single-Linkage Clustering Costs

Pan Peng

University of Science &
Technology of China

Christian Sohler

University of Cologne
Cologne, Germany

Yi Xu

University of Science &
Technology of China

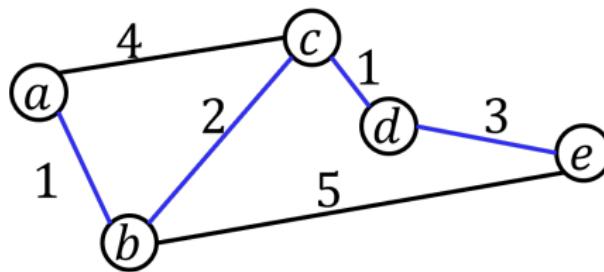
Women in TCS Workshop 2025

Single Linkage Clustering

- **Input:** weighted graph $G = (V, E)$, **distance**/similarity
- **SLC:** bottom-up hierarchical clustering
combine two **closest**/most similar clusters

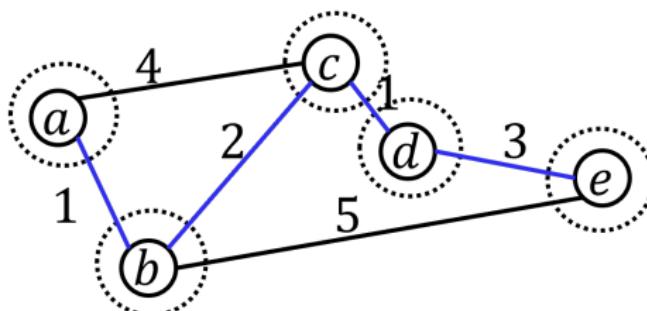
Single Linkage Clustering

- Input: weighted graph $G = (V, E)$, **distance**/similarity
- SLC: bottom-up hierarchical clustering
combine two **closest**/most similar clusters
- Example: $V = \{a, b, c, d, e\}$



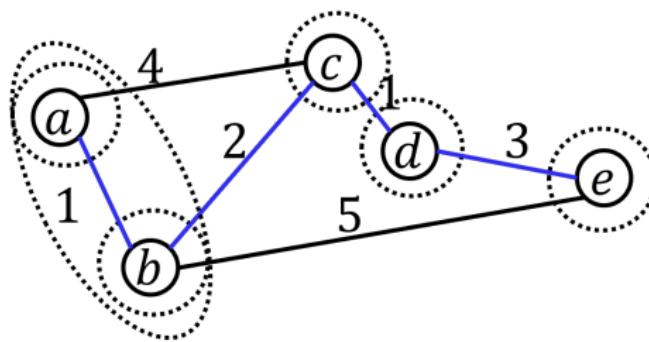
Single Linkage Clustering

- Input: weighted graph $G = (V, E)$, **distance**/similarity
- SLC: bottom-up hierarchical clustering
combine two **closest**/most similar clusters
- Example: $V = \{a, b, c, d, e\}$



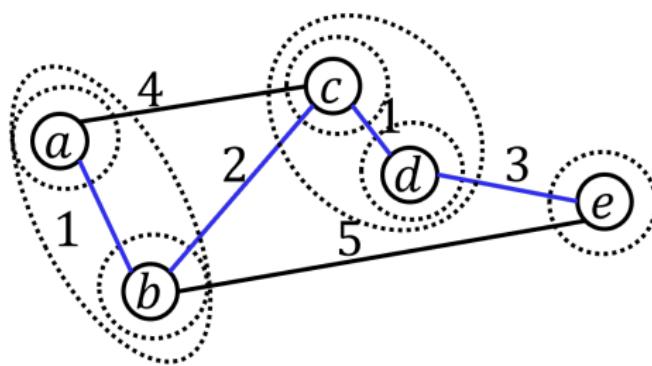
Single Linkage Clustering

- Input: weighted graph $G = (V, E)$, **distance**/similarity
- SLC: bottom-up hierarchical clustering
combine two **closest**/most similar clusters
- Example: $V = \{a, b, c, d, e\}$



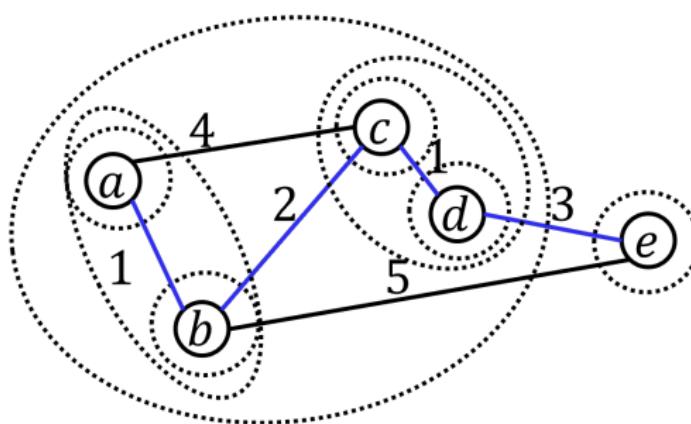
Single Linkage Clustering

- Input: weighted graph $G = (V, E)$, **distance**/similarity
- SLC: bottom-up hierarchical clustering
combine two **closest**/most similar clusters
- Example: $V = \{a, b, c, d, e\}$



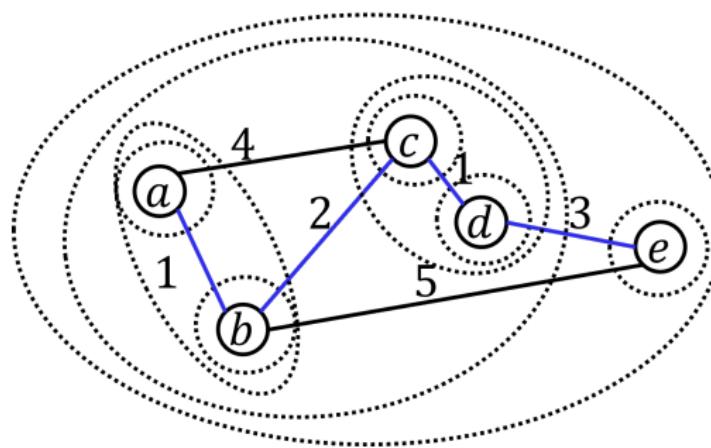
Single Linkage Clustering

- Input: weighted graph $G = (V, E)$, **distance**/similarity
- SLC: bottom-up hierarchical clustering
combine two **closest**/most similar clusters
- Example: $V = \{a, b, c, d, e\}$



Single Linkage Clustering

- Input: weighted graph $G = (V, E)$, **distance**/similarity
- SLC: bottom-up hierarchical clustering
combine two **closest**/most similar clusters
- Example: $V = \{a, b, c, d, e\}$



Single Linkage Clustering

- Input: weighted graph $G = (V, E)$, **distance**/similarity
- SLC: bottom-up hierarchical clustering
combine two **closest**/most similar clusters

cost_k : sum of the costs of spanning trees within k clusters

$\text{cost}(G) := \sum_{k=1}^n \text{cost}_k$, total clustering cost

Single Linkage Clustering

- Input: weighted graph $G = (V, E)$, **distance**/similarity
- SLC: bottom-up hierarchical clustering
combine two **closest**/most similar clusters

cost_k : sum of the costs of spanning trees within k clusters

$\text{cost}(G) := \sum_{k=1}^n \text{cost}_k$, total clustering cost

Motivation:

- cost_k captures important **structure**
- SLC minimizes these costs

Single Linkage Clustering

- Input: weighted graph $G = (V, E)$, **distance**/similarity
- SLC: bottom-up hierarchical clustering
combine two **closest**/most similar clusters

cost_k : sum of the costs of spanning trees within k clusters

$\text{cost}(G) := \sum_{k=1}^n \text{cost}_k$, total clustering cost

Motivation:

- cost_k captures important **structure**
- SLC minimizes these costs

Naive solution: compute an MST in $\tilde{O}(nd)$ time

Question: estimate $\text{cost}(G)$ and cost_k in **sublinear** time?

Main Results

W : max weight d : average degree query model: adj. list

Setting	cost(G)	cost $_k$	Lower bound
Distance Case	$\tilde{O}\left(\frac{\sqrt{W}}{\varepsilon^3} d\right)$	$\tilde{O}\left(\frac{\sqrt{W}}{\varepsilon^3} d\right)$	$\Omega\left(\frac{\sqrt{W}}{\varepsilon^2} d\right)$
Similarity Case	$\tilde{O}\left(\frac{W}{\varepsilon^3} d\right)$	$\tilde{O}\left(\frac{W}{\varepsilon^3} d\right)$	$\Omega\left(\frac{W}{\varepsilon^2} d\right)$

Main Results

W : max weight d : average degree query model: adj. list

Setting	cost(G)	cost $_k$	Lower bound
Distance Case	$\tilde{O}\left(\frac{\sqrt{W}}{\varepsilon^3} d\right)$	$\tilde{O}\left(\frac{\sqrt{W}}{\varepsilon^3} d\right)$	$\Omega\left(\frac{\sqrt{W}}{\varepsilon^2} d\right)$
Similarity Case	$\tilde{O}\left(\frac{W}{\varepsilon^3} d\right)$	$\tilde{O}\left(\frac{W}{\varepsilon^3} d\right)$	$\Omega\left(\frac{W}{\varepsilon^2} d\right)$

Succinct representation of the SLC estimates $(\widehat{\text{cost}}_1, \dots, \widehat{\text{cost}}_n)$ s.t.
 $\forall k$, recover $\widehat{\text{cost}}_k$ in a **short** time, and **on average** a $(1 + \varepsilon)$ estimate

On average: $\sum_{k=1}^n |\widehat{\text{cost}}_k - \text{cost}_k| \leq \varepsilon \cdot \text{cost}(G) = \varepsilon \sum_{k=1}^n \text{cost}_k$

Short time: in $O(\log \log W)$ time

Main Results

W : max weight d : average degree query model: adj. list

Setting	$\text{cost}(G)$	cost_k	Lower bound
Distance Case	$\tilde{O}\left(\frac{\sqrt{W}}{\varepsilon^3} d\right)^1$	$\tilde{O}\left(\frac{\sqrt{W}}{\varepsilon^3} d\right)$	$\Omega\left(\frac{\sqrt{W}}{\varepsilon^2} d\right)$
Similarity Case	$\tilde{O}\left(\frac{W}{\varepsilon^3} d\right)$	$\tilde{O}\left(\frac{W}{\varepsilon^3} d\right)$	$\Omega\left(\frac{W}{\varepsilon^2} d\right)$

Succinct representation of the SLC estimates $(\widehat{\text{cost}}_1, \dots, \widehat{\text{cost}}_n)$ s.t.
 $\forall k$, recover $\widehat{\text{cost}}_k$ in a **short** time, and **on average** a $(1 + \varepsilon)$ estimate

On average: $\sum_{k=1}^n |\widehat{\text{cost}}_k - \text{cost}_k| \leq \varepsilon \cdot \text{cost}(G) = \varepsilon \sum_{k=1}^n \text{cost}_k$

Short time: in $O(\log \log W)$ time

¹ Applying [CRT05], one can get: $(1 + \varepsilon)$ -estimate, $\tilde{O}\left(\frac{W}{\varepsilon^2} d\right)$ queries

Proof Sketch for Total Cost Estimation (Distance Case)

CC: Connected Component W : max weight

Step 1

Reduction \Rightarrow estimating # of CCs

Proof Sketch for Total Cost Estimation (Distance Case)

CC: Connected Component W : max weight

Step 1

Reduction \Rightarrow estimating # of CCs

Step 2 [CRT05]

Estimate # of CCs \Rightarrow sample & BFS

Proof Sketch for Total Cost Estimation (Distance Case)

CC: Connected Component W : max weight

Step 1

Reduction \Rightarrow estimating # of CCs $\quad \text{cost}(G) \approx \sum_{j=1}^W c_j^2$

Step 2 [CRT05]

Estimate # of CCs \Rightarrow sample & BFS

Proof Sketch for Total Cost Estimation (Distance Case)

CC: Connected Component W : max weight

Step 1

Reduction \Rightarrow estimating # of CCs $\quad \text{cost}(G) \approx \sum_{j=1}^W c_j^2$

Step 2 [CRT05]

Estimate # of CCs \Rightarrow sample & BFS $\quad \text{in } \tilde{O}\left(\frac{\sqrt{W}}{\varepsilon^2}\right) \text{ time}$

Proof Sketch for Total Cost Estimation (Distance Case)

CC: Connected Component W : max weight

Step 1

Reduction \Rightarrow estimating # of CCs $\quad \text{cost}(G) \approx \sum_{j=1}^W c_j^2$

Step 2 [CRT05]

Estimate # of CCs \Rightarrow sample & BFS $\quad \text{in } \tilde{O}(\frac{\sqrt{W}}{\epsilon^2})$ time

Naive solution: estimate # of CCs for W graphs, in $\tilde{O}(W \cdot \frac{\sqrt{W}}{\epsilon^2})$ time!

Proof Sketch for Total Cost Estimation (Distance Case)

CC: Connected Component W : max weight

Step 1

Reduction \Rightarrow estimating # of CCs $\quad \text{cost}(G) \approx \sum_{j=1}^W c_j^2$

Step 2 [CRT05]

Estimate # of CCs \Rightarrow sample & BFS $\quad \text{in } \tilde{O}(\frac{\sqrt{W}}{\epsilon^2})$ time

Naive solution: estimate # of CCs for W graphs, in $\tilde{O}(W \cdot \frac{\sqrt{W}}{\epsilon^2})$ time!

Step 3

Apply **binary search** to accelerate

Proof Sketch for Total Cost Estimation (Distance Case)

CC: Connected Component W : max weight

Step 1

Reduction \Rightarrow estimating # of CCs $\quad \text{cost}(G) \approx \sum_{j=1}^W c_j^2$

Step 2 [CRT05]

Estimate # of CCs \Rightarrow sample & BFS $\quad \text{in } \tilde{O}(\frac{\sqrt{W}}{\epsilon^2})$ time

Naive solution: estimate # of CCs for W graphs, in $\tilde{O}(W \cdot \frac{\sqrt{W}}{\epsilon^2})$ time!

Step 3

Apply **binary search** to accelerate $\quad \{c_j\}$ is monotonic

Proof Sketch for Total Cost Estimation (Distance Case)

CC: Connected Component W : max weight

Step 1

Reduction \Rightarrow estimating # of CCs $\quad \text{cost}(G) \approx \sum_{j=1}^W c_j^2$

Step 2 [CRT05]

Estimate # of CCs \Rightarrow sample & BFS $\quad \text{in } \tilde{O}\left(\frac{\sqrt{W}}{\varepsilon^2}\right)$ time

Naive solution: estimate # of CCs for W graphs, in $\tilde{O}(W \cdot \frac{\sqrt{W}}{\varepsilon^2})$ time!

Step 3

Apply **binary search** to accelerate $\quad \{c_j\}$ is monotonic

\Rightarrow ROBUST algo, works even on **not** monotonic estimates $\{\hat{c}_j\}$!

\Rightarrow Estimate # of CCs upto $\tilde{O}(\log W/\varepsilon)$ graphs!

Proof Sketch for Total Cost Estimation (Distance Case)

CC: Connected Component W : max weight

Step 1

Reduction \Rightarrow estimating # of CCs $\quad \text{cost}(G) \approx \sum_{j=1}^W c_j^2$

Step 2 [CRT05]

Estimate # of CCs \Rightarrow sample & BFS $\quad \text{in } \tilde{O}\left(\frac{\sqrt{W}}{\varepsilon^2}\right)$ time

Naive solution: estimate # of CCs for W graphs, in $\tilde{O}(W \cdot \frac{\sqrt{W}}{\varepsilon^2})$ time!

Step 3

Apply **binary search** to accelerate $\quad \{c_j\}$ is monotonic

\Rightarrow ROBUST algo, works even on **not** monotonic estimates $\{\hat{c}_j\}!$

\Rightarrow Estimate # of CCs upto $\tilde{O}(\log W/\varepsilon)$ graphs!

Total running time & queries: $\tilde{O}\left(\frac{\sqrt{W}}{\varepsilon^3}\right)$